Raw Milk and Health

Avian Flu and Raw Milk: A Common Sense Approach

Breaking News!  There is a concern among dairymen and biosecurity experts about a multistate outbreak of avian flu that is affecting cattle in Texas, Kansas, Michigan, New Mexico, and Idaho. Various Federal and state government agencies are using this cow illness outbreak as a stage to warn consumers against drinking raw milk. 

According to the US Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS), in cattle this illness causes decreased lactation and low appetite, but the cattle generally recover without dying. Cows who have contracted this illness have recovered “with little to no associated mortality,” according to the USDA.

The press and media information released by the USDA and others warns against drinking raw milk from affected cows. They further state that pasteurization protects consumers from the illness.  


Raw Milk and Breastmilk are Very Similar

As a premed-trained dairy farmer who is a 12-year member of the UC Davis International Milk Genomics Consortium (IMGC), I have studied viral infections in cows and the immunologic and biomechanics of antibody creation.  Based on what is known about antibodies and raw milk, there are deep flaws in the warnings about consuming raw milk related to avian flu.  

Dr David Dallas PhD is an IMGC researcher who studies milk genomics. At the 2023 IMGC Symposium, Dr Dallas reported that raw milk from cows and goats is “qualitatively similar” to human breast milk.  However, “quantitatively” bovine raw milk and human breast milk have “different levels” of various milk components.  

This is why raw milk from cows and goats is so well-digested and compatible by human consumers. We can thus compare human mammals with bovine mammals in how mothers protect their babies. 

 

Mammals Protect Their Young Through Antibodies in Raw Milk

In 2004, the state of California Veterinarian visited our dairy to perform tuberculosis testing of our cows. He told me something I will never forget: “Mammals protect their young.”  

What he meant was that, in general, when a mother becomes infected by a virus or bacterial infection, she will produce antibodies in her raw milk that will provide her young with protection from the illness.  This is part of why breastfed babies are known to have stronger immune systems than babies raised on formula.  Antibodies in raw milk are one way that Nature assures the strength and survival of the next generation.  

The CDC readily acknowledges that mothers should continue to breastfeed their infants because “flu is not spread to infants through breast milk.” They know that breastmilk contains “antibodies and other immunological factors that can help protect her infant from flu.” Similarly, studies performed at the UC Davis dairy lab during COVID found that exposing a cow to coronavirus resulted in antibodies to coronavirus in her raw milk.  

These studies were a further confirmation of what doctors and the owners of Alta Dena dairy knew way back in the 1960’s: cows that have been exposed to illnesses create antibodies to the illnesses which are then passed through their raw milk.  Decades ago, Alta Dena dairy would purposely make immune milk for certain consumers and doctors by intentionally exposing cows to specific illnesses. This raw milk was used to help heal sick people.  Now the FDA does not allow this practice and threatens anyone who uses it with criminal charges. They consider it to be equivalent to creating a new drug without oversight, which is a crime in the USA under the Food Drug and Cosmetic Act.  

Further back in history, it was observed that the milk maidens of the 1700-1800s did not catch smallpox because of their exposure to cowpox by being around dairy animals and drinking raw milk.

 

Common Sense Approach to Avian Flu in Cattle

The warnings against raw milk related to avian flu are clearly fearmongering.  The FDA acknowledges that “there is limited information available about the transmission of bird flu in raw, unpasteurized milk.” Then they go on to use the same fearmongering tactics they’ve been using for decades against raw milk, despite the fact that there is now ample evidence that raw milk can be carefully produced as a low-risk food.  

Conscientious raw milk producers already monitor their herds for illness and ensure that raw milk from unhealthy animals is not used for direct human consumption. Additionally, biosecurity measures such as maintaining a closed herd and quarantining any new animals are implemented.   

These are common sense measures that are already recommended by the Raw Milk Institute and used by diligent raw milk farmers. We have no reason to suspect that any further measures are necessary in the current Avian flu outbreak in cattle.  Mammalian milk is uniquely designed to protect and strengthen the immune system, and those systems will continue on as new threats arise.

Allergies and Raw Milk

Raw milk and allergies.png
 

Modern Lifestyles and Allergies

Although allergies were rare prior to the 1800’s [1], they are a common affliction in our modern lifestyles.  As people have moved further from their agricultural roots, allergies have become more prevalent.  Several studies have found that exposure to diverse bacteria and potential allergens in the environment makes a big difference in preventing the development of allergies.

For instance, in a study looking at allergies and asthma in northern Europe, allergy prevalence was much higher in Finnish people as compared to Russians, even though they lived in geoclimatically similar areas [2]. 27% of Finnish school children demonstrated allergic sensitization to pollen, as compared to only 2% of their Russian counterparts. In unraveling the causes for this disparity, the study found a striking result: “the epidemic of allergy and asthma results from reduced exposure to natural environments with rich microbiota, changed diet and sedentary lifestyle.” Basically, exposure to environments with high bacterial and microbial diversity is associated with lower rates of asthma and allergies.   

North Karelia in Finland and Pitkäranta region in the Republic of Karelia in Russia. The dashed lines are Finnish borders before 1944. Haahtela, et al, 2015.

North Karelia in Finland and Pitkäranta region in the Republic of Karelia in Russia. The dashed lines are Finnish borders before 1944. Haahtela, et al, 2015.

Several other studies have found similar results, and have concluded that living in a farm environment provides protection from asthma and allergies. Contact with farm animals was found to be associated with lower rates of allergies [3], as was “exposure to stables and farm milk” [4]. Although several studies identified that consumption of raw milk (aka “farm milk”) was an integral part of the farm environment, it was argued that allergy protection was from the farm environment and not from raw milk consumption.  However, further research has revealed that raw milk is indeed a key factor in protecting against allergies and asthma.

 

Children Who Drink Raw Milk Have Less Allergies

Several large epidemiological studies of European children have found correlations between raw milk consumption and decreased rates of allergies.

PARSIFAL Study

The PARSIFAL study was designed to look at allergy risk factors in children. This large study of over 14,800 European children (from Austria, Germany, the Netherlands, Sweden, and Switzerland) investigated allergic diseases in relation to children’s exposure to different environments (farms, rural, suburban) and farm-fresh foods (such as raw dairy products, eggs, and vegetables). The PARSIFAL data relating to allergies and raw milk were published in December 2006 in the Journal of Clinical and Experimental Allergy [5].

The PARSIFAL study concluded that there is a “significant inverse association between farm [raw] milk consumption and childhood asthma, rhinoconjunctivitis, sensitization to pollen, a mix of food allergens, and horse dander." The study found that, regardless of which environment the children lived in, those children who drank raw milk had significantly lower rates of allergies and asthma than children who did not drink raw milk. These effects were “most pronounced in children drinking farm milk since their first year of life.”

GABRIELA Study

The GABRIELA study was designed to investigate the genetic and environmental causes of asthma and allergies.  This study included over 8,000 European children (from Germany, Austria, and Switzerland), and was published in the Journal of Allergy and Clinical Immunology in August 2011 [6]. In this study, raw milk consumption was compared to consumption of boiled/pasteurized milk, and the level of exposure to raw milk in utero through school age was also accounted for. The study also looked into the children’s exposure to farm environments as a possible variable related to rates of asthma and allergies.

The GABRIELA study found that raw milk consumption is associated with significantly lower rates of allergies and asthma, and that this beneficial effect is independent of other farm exposures. It was found that early exposure to raw milk (at <1 year of age) and daily consumption of raw milk increased the beneficial effect in children who drank a mixture of raw milk and pasteurized milk. The consumption of only pasteurized milk “was not associated with any health outcome.”

unsplash-image--Ux5mdMJNEA.jpg

 

It’s Not the “Farm Effect,” It’s the Raw Milk!

The above-referenced studies specifically analyzed the effects of living environments, and found that the beneficial effects of raw milk on allergies and asthma were indeed present even in children who did not live on farms. Furthermore, a recent meta-analysis of eight health studies related to raw milk was published in the November 2019 issue of the Journal of Allergy and Clinical Immunology [7]. A meta-analysis is a quantitative statistical analysis which combines the results of multiple scientific studies, thereby allowing the researchers to derive overall conclusions about that body of research.

The recent meta-analysis, written by a team of researchers from the Netherlands and Germany, concluded that when taken as a whole, the body of data from the previous studies shows that raw milk consumption in childhood has a protective effect on allergies and asthma “independent of other farm exposures and that children not living on a farm can theoretically profit from this effect.” 

unsplash-image-v5GI9rol_WY.jpg

 

Why Does Raw Milk Protect Against Allergies and Asthma?

Although it was originally postulated that raw milk’s bacterial content was responsible for its allergy-protective effects, research has not found this to be the case.  For instance, the GABRIELA study found that, “Contrary to our expectations, we did not observe an association between total viable bacterial counts in milk and investigated health outcomes” [6].

More recent research has investigated whether the whey proteins in raw milk could be responsible for the beneficial effect on allergies. A study published in the June 2020 Food and Function Journal “aimed at achieving a better understanding of the underlying mechanism between heat damage to whey proteins and allergy development” [8]. In this study, “raw cow’s milk was heated for 30 min at 50, 60, 65, 70, 75, or 80 °C [122, 140, 149, 158, 167, or 176 °F]… The allergy-protective effect of differently heated milk samples were tested in a murine OVA-induced food allergy model.” 

Heat treatment at 65 °C or higher destroyed allergy-protective capacity of raw milk in murine OVA-induced food allergy model. Xiong, et al, 2020.

Heat treatment at 65 °C or higher destroyed allergy-protective capacity of raw milk in murine OVA-induced food allergy model. Abbring, Xiong, et al, 2020.

This study found that allergy protection ceases when raw milk is heated to 149 °F, which is the same temperature at which the whey proteins are denatured.  It was concluded that the whey protein in raw milk provides protection from allergies, asthma, and inflammation.  When heated above 149 °F, these properties are dramatically reduced or eliminated. This finding is an important confirmation of the unique beneficial properties of whole, unprocessed raw milk. 

Low-Risk Raw Milk as a Therapeutic Tool Against Allergies

The research is clear that raw milk consumption is correlated with protection from allergies and asthma. Although a living environment that is rich in bacterial diversity is helpful, it has been demonstrated that the allergy-protective benefits of raw milk are present in both rural and urban environments.  The immunologically active whey proteins are likely the cause of this protective effect.  There is a growing body of evidence that raw milk is a low-risk food when it is produced carefully and intentionally [9, 10]. Thus, low-risk raw milk can be a powerful therapeutic tool for allergy and asthma protection.

unsplash-image-eRAq9asBIy4.jpg

 

References

[1] Hay Fever and Paroxysmal Sneezing: Their Etiology and Treatment. 1887. Mackenzie M. https://archive.org/details/b20406757/page/n7/mode/2up

[2] Hunt for the origin of allergy – comparing the Finnish and Russian Karelia. Clinical and Experimental Allergy. 2015; (45) 891– 901. Haahtela T, Laatikainen T, Alenius H, Auvinen P, Fyhrquist N, Hanski I, von Hertzen L, Jousilahti P, Kosunen T U, Markelova O, Mäkelä M J, Pantelejev V, Uhanov M, Zilber E, Vartiainen E. https://onlinelibrary.wiley.com/doi/full/10.1111/cea.12527

[3] Farming exposure in childhood, exposure to markers of infections and the development of atopy in rural subjects. Clinical and Experimental Allergy : Journal of the British Society for Allergy and Clinical Immunology vol. 34,8 (2004): 1178-83. Radon K, Windstetter D, Eckart J, Dressel H, Leitritz L, Reichert J, Schmid M, Praml G, Schosser M, von Mutius E, Nowak D. https://pubmed.ncbi.nlm.nih.gov/15298556/

[4] Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet. 2001;358(9288):1129-1133. Riedler J, Braun-Fahrländer C, Eder W, Schreuer M, Waser M, Maisch S, Carr D, Schierl R, Nowak D, von Mutius E; ALEX Study Team. https://pubmed.ncbi.nlm.nih.gov/11597666/

[5] Inverse association of farm milk consumption with asthma and allergy in rural and suburban populations across Europe. Clinical and Experimental Allergy. 2007; 37(5):661-70. Waser M, Michels KB, Bieli C, Flöistrup H, Pershagen G, von Mutius E, Ege M, Riedler J, Schram-Bijkerk D, Brunekreef B, van Hage M, Lauener R, Braun-Fahrländer C; PARSIFAL study team. https://www.ncbi.nlm.nih.gov/pubmed/17456213

[6] The protective effect of farm milk consumption on childhood asthma and atopy: The GABRIELA study. Journal of Allergy and Clinical Immunology. 2011; 128 (4): 766-73. Loss G, Apprich S, Waser M, Kneifel W, Genuneit J, Büchele G, Weber J, Sozanska B, Danielewicz H, Horak E, Joost van Neerven RJ, Heederik D, Lorenzen PC, von Mutius E, Braun-Fahrländer C; GABRIELA study group. https://www.jacionline.org/article/S0091-6749(11)01234-6/fulltext

[7] The Beneficial Effect of Farm Milk Consumption on Asthma, Allergies, and Infections: From Meta-Analysis of Evidence to Clinical Trial. Journal of Allergy and Clinical Immunology: In Practcice, 2019. 8 (3): 878-889. Brick T, Hettinga K, Kirchner B, Pfaffl MW, Ege MJ. https://www.ncbi.nlm.nih.gov/pubmed/31770653

[8] Loss of allergy-protective capacity of raw cow's milk after heat treatment coincides with loss of immunologically active whey proteins. Food and Function. 2020 Jun 24;11(6):4982-4993. Abbring S, Xiong L, Diks MAP, Baars T, Garssen J, Hettinga K, van Esch BCAM. https://pubmed.ncbi.nlm.nih.gov/32515464/

[9] Recent Trends in Unpasteurized Fluid Milk Outbreaks, Legalization, and Consumption in the United States. PLOS Currents. 2018; 10. Whitehead J, Lake B. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6140832/#ref27

[10] Raw milk producers with high levels of hygiene and safety. Epidemiology and Infection, 2020; 148, e14, 1-7. Berge AC, Baars T. https://www.ncbi.nlm.nih.gov/pubmed/32000877 

Raw Milk and Lactose Intolerance

People choose to drink raw milk for many different reasons. Some are seeking to support local farms and connect with the places from which their food originates.  Others want to make sure that animal welfare is a high priority in the production of their food. Some people choose raw milk for its delicious, rich flavor.  And still others seek out raw milk in order to address specific health conditions, such as asthma, allergies, and eczema.

Lactose intolerance and maldigestion of pasteurized milk are significant factors for many people who choose raw milk. Nonetheless, when researching the peer-reviewed literature, many would conclude that raw milk cannot help with lactose intolerance. Raw milk detractors often cite a study by Stanford University in their assertion that raw milk does not help with lactose intolerance. However, many people who have been diagnosed as “lactose intolerant” have reported that they can actually drink raw milk with no digestive problems. Let’s dig deep into all of this to better understand the disconnect.

The Stanford Study

The Stanford study, titled “Effect of Raw Milk on Lactose Intolerance: A Randomized Controlled Pilot Study,” assessed the effects of raw milk, pasteurized milk, and soy milk in 16 adults. The people participating in this study were confirmed to have “true lactose malabsorption” through the use of a Hydrogen Breath Test (HBT). Over a course of several weeks, the participants in the study consumed successively greater amounts of raw milk, pasteurized milk, and soy milk in an 8-day milk phase for each type of milk as shown in the figure below.  This study found that there was no improvement in lactose intolerance symptoms with the consumption of raw milk compared to pasteurized milk.

Milk dosage protocol and outcome measures for each 8-day milk phase: full amount of milk was consumed in 1 sitting on each day. Mummah, et al 2014.

Milk dosage protocol and outcome measures for each 8-day milk phase: full amount of milk was consumed in 1 sitting on each day. Mummah, et al 2014.

Although the Stanford study has often been cited as proving that raw milk does not help with lactose intolerance, there are some significant problems with this study. The sample size of 16 participants is quite small, and this makes is very difficult to make any sweeping conclusions based on the results of the study.  The sample size becomes even more problematic when it is considered that 383 people initially signed up to participate in the study.

The 383 people who volunteered for this study considered themselves to be lactose intolerant. This means that they had experienced digestive symptoms such as diarrhea, abdominal cramping, audible bowel sounds, and/or flatulence as a result of consuming milk products. However, only 27 people were qualified to participate through the use of the Hydrogen Breath Test. Of these 27 people, 16 people chose to participate in the study. Out of the initial group of 383 volunteer participants, only 4% actually participated in the study. This means that 96% of the original volunteers were excluded from this study!

This calls into question the use of the Hydrogen Breath Test as an appropriate measure of lactose intolerance.  Although the HBT is used to characterize the clinical definition of lactose malabsorption, it is clearly not a sufficient test for identifying people who experience digestive symptoms as a result of consuming milk products. The study even mentioned that, “Many people with lactose malabsorption [as diagnosed through results of the HBT] do not report clinical lactose intolerance. Conversely, many individuals with perceived lactose intolerance do not experience malabsorption [as confirmed with HBT].” The Hydrogen Breath Test is clearly not a sufficient test for identifying people who experience digestive symptoms from the consumption of milk products.

Another significant problem with the Stanford study is that the length of the 8-day milk phases may have been too short.  Specifically, the study authors found that “the reduced H2 production observed for raw milk on day 8 vs day 1 suggests a degree of adaptation to raw milk… In contrast to raw milk, no adaptation was observed for pasteurized milk.” The participants had decreased levels of hydrogen in the HBT by the end of the 8-day raw milk phase, and this finding warrants further study to determine whether this trend would have continued over a longer period of time and resulted in a reduction of lactose intolerance symptoms.

Overall, the Stanford study fell far short of actually answering the question of whether raw milk can be well-tolerated by people who describe themselves as “lactose-intolerant.” 96% of the volunteers who considered themselves to be lactose intolerant were excluded from this study. Furthermore, the study did not continue long enough to determine if the positive trend in hydrogen production from drinking raw milk would have continued and resulted in reduction of lactose intolerance symptoms.

First-Hand Accounts About Raw Milk and Lactose Intolerance

There have been numerous first-hand reports of improvements in lactose intolerance from the consumption of raw milk. For instance, lactose intolerance runs in my husband's family, coming through his father.  My husband and his siblings all developed digestive problems from consuming milk and other dairy products at around 18-20 years old. Prior to trying raw milk, my husband could only tolerate pasteurized milk products if he took lactase enzyme pills whenever he consumed dairy. However, my husband has been able to drink raw milk in moderate amounts (such as 1-2 glasses per day) with no problems, and raw milk consumption also corresponded with an increased ability to tolerate pasteurized dairy in cheese and ice cream.  My father-in-law was also able to consume raw milk without digestive problems and reported that it also increased his ability to consume pasteurized cheese and ice cream.  

Here are a few more first-hand accounts about raw milk consumption and lactose intolerance.

I am lactose intolerant. I was diagnosed around the age of 12. I missed so much school due to upset stomach & went off of dairy fully for over 10 years. I can drink raw milk with no issues - I can have cups of it with no bad side effects. In fact - I can even have pasteurized dairy now with little to no problems. It has helped my gut health so much - I notice when I don’t consume it because my digestion gets weird.

“When I first started drinking it I was terrified but after the first cup my body craved it for the first month. It was all I wanted. I could have easily drank half a gallon a day if I didn’t limit myself. That’s tapered off now though.”       ~Bethanie N.

I had IBS and had to take everything out of my diet and slowly add things back in to see what was bothering me. It was processed dairy. Found raw dairy and now that's all I consume most days. Raw milk, cheese, yogurt, butter. IBS gone, hemorrhoids gone, arthritis gone, inflammation gone, sinus problems gone. Feel like a new woman.” ~Patricia W.

My kids were all lactose intolerant, but when I switched to raw A2, they all saw a huge difference in response. No more issues. One of my kiddos was at the point of needing her tonsils removed, but they shrunk down to normal size, and her sleep apnea went away.” ~mother of four children

raw milk

Surveys About Raw Milk and Lactose Intolerance

There have been several raw milk surveys which collected data about lactose intolerance. In a 2007 survey of Michigan raw milk drinkers, 155 people participating in the survey had been diagnosed with lactose intolerance by a healthcare professional. Out of these 155 people, 118 reported that they did not have lactose intolerance symptoms from consuming raw milk.  Thus, 76% of the survey respondents who had been diagnosed with lactose intolerance were able to consume raw milk with no digestive issues.

In a 2011 survey of 56 Michigan raw milk drinkers, “eleven individuals claimed that they experienced symptoms of lactose intolerance when drinking processed milks but had no ill side effects from drinking raw milk.”

In a 2014 survey of 153 Maryland raw milk drinkers, “Fifty-nine respondents claimed no discomfort after drinking raw milk but discomfort from drinking pasteurized milk.

Raw Milk and Lactase

Pasteurization inactivates enzymes and also denatures proteins, and consequently pasteurized milk induces digestive discomfort in many people. Lactase is the enzyme responsible for breaking down lactose into digestible form. Raw milk facilitates the production of lactase enzyme in the intestinal tract, and thus it makes sense that so many people have reported improvements in lactose intolerance from drinking raw milk.

Ancient populations who relied on dairy products adapted over time by developing lactase persistence genes. These genes allow people to digest lactose into adulthood, and they have been found in various indigenous populations in Africa, Europe, Asia, and the Middle East. Overall, around 35% of adults worldwide have lactase persistence genes.

Although it has been widely argued that only people who have lactase persistence genes can consume milk, there are currently many populations around the globe who subsist largely on dairy yet who do not have lactase persistence genes.  For instance, despite the fact that an estimated 95% of Mongolians do not have the lactase persistence gene, their diet relies very heavily on raw milk, cheese, and other milk products.

Furthermore, archaeological evidence shows that humans were consuming raw milk for thousands of years before the widespread appearance of the lactase-persistence gene. Raw milk allowed humans to thrive in conditions where survival would have been difficult. Scientists now believe that lactase-persistence genes were spread through natural selection. This means that the reproductive capacity and/or survivability of ancient raw milk drinkers was substantially increased compared to non-milk-drinking populations.

Large Body of Evidence for Raw Milk and Lactose Intolerance Benefits

First-hand accounts and surveys show that there are many people whose lactose intolerance symptoms are improved by drinking raw milk. Additionally, many worldwide raw milk-drinking populations do not have lactase persistence genes. Furthermore, the archaeological record shows that humans were consuming raw milk for thousands of years before the appearance of lactase persistence genes. This large body of evidence cannot be negated by one small study. The Stanford study should clearly not be seen as the final word on raw milk and lactose intolerance.

Raw Milk Reduces Respiratory Infections and Fevers

respiratory infections and raw milk

A study of 983 European infants looked at consumption of raw milk, pasteurized milk, and ultra-high temperature pasteurized milk alongside occurrence of respiratory tract infections, rhinitis (runny nose), otitis (ear infections), and fever. This study was published in January 2015 in the Journal of Allergy and Clinical Immunology [1].

Every week from age 8 weeks to 53 weeks, the infants’ health outcomes and dairy consumption were tracked. “The main finding of this analysis was an inverse association between consumption of unprocessed [raw] cow's milk and rhinitis, RTI [respiratory tract infection], and otitis.” There was also an inverse association between raw milk and fevers.

In layman’s terms, an “inverse association” means that as one increases, the other decreases. This study thus found that, as raw milk consumption increased, the incidence of runny nose, respiratory tract infections, fevers, and ear infections decreased. The researchers concluded that, “The protective effects of raw cow's milk on infections were comparable to those of breast-feeding, suggesting similar anti-infective properties of bovine and human milk.”

raw milk respiratory infections.png

Additionally, C-reactive proteins were measured in the infants at 12 months old. C-reactive proteins are a measure of inflammation in the body. The study found that “raw farm milk consumption was inversely associated with C-reactive protein levels at 12 months.” The researchers concluded that consumption of raw milk led to a “sustained anti-inflammatory effect” in the body.

It is clear from this research that raw milk consumption is correlated with improved resistance to respiratory tract infections, ear infections, fevers, and overall inflammation.

References

[1] Consumption of unprocessed cow's milk protects infants from common respiratory infections. Journal of Allergy and Clinical Immunology. 2015; 135 (1): 56-62. Loss G, Depner M, Ulfman LH, Joost van Neerven RJ, Hose AJ, Genuneit J, Karvonen M, Hyvärinen A, Kaulek V, Roduit C, Weber J, Lauener R, Pfefferle PI, Pekkanen J, Vaarala O, Dalphin JC, Riedler J, Braun-Fahrländer C, von Mutius E, Ege MJ; PASTURE study group. https://www.jacionline.org/article/S0091-6749%2814%2901274-3/fulltext

New Raw Milk Research From the 2023 IMGC Symposium

A Farmer’s Takeaways from the 2023 Symposium of the International Milk Genomics Consortium (IMGC)

“If you are the smartest person in the room, you are in the wrong room.”

Introduction

Well…I was in the right room at IMGC with a huge opportunity to learn and grow. Just like all prior years.

The 20th International Milk Genomics Consortium (IMGC) Symposium was held on September 6-8 2023. This was the 12th year that I have attended the IMGC Symposium. For the last several years, the Raw Milk Institute has been an official Bronze Level Sponsor of the conference. These conferences have taken me all over the world, including Cork Ireland, Quebec Canada, Aarhus Demark (twice), Sydney Australia, and UC Davis in California several times. I am nearly always the only farmer in the room filled with dairy processing scientists, PhD students, dairy science professors and university professors, and other milk researchers.

Over 12 years, I have made some great friends and created some important collaborations and alliances. I am approached by PhDs, especially after I speak at the microphone after a particularly engaging presentation that begs questions. They say things like, “Keep on asking those great questions!”  I am the only one that can ask those questions because everyone else would potentially lose their NIH or industry grants if they dared to asked those kinds of questions.

Time and interest are ushering in a new generation of open-minded PhD researchers, many of whom are women. They all want to talk about raw milk and its bioactive elements. Raw milk is truly a miracle of nature.  Being an event sponsor has allowed greater access to insider information about all things milk.  Below are my main takeaways from three intensive days of meetings, interactions, meals and dinner parties, and presentations in Cork Ireland at the University of Cork.

Raw Milk Institute was a Bronze Level Sponsor of the 2023 IMGC Symposium

Raw Milk Nourishes, Protects, and Directs

Raw milk is incredibly complex and perfectly designed to nourish, protect, and direct. We all know that raw milk is designed as the first food of life for babies to thrive and grow, yet as researchers continue to study raw milk, they discover many more benefits.

For instance, raw milk serves as a delivery system for immune-bioactive proteins. Peptides (which are chains of amino acid proteins) are protective of the baby by not allowing pathogens to cause illness. These functional proteins serve many roles, including protection of the baby.

Other specialized-proteins in breastmilk include natural mRNA, which provide the genetic information to direct cellular metabolic processes in the baby.  Breastmilk also contains stem cells for repair of damaged cells or tissues.

Raw milk also contains everything needed for its digestion. Raw milk has proteases, peptidases (for digesting proteins), lipases (for digesting fats), and bacteria that make lactase (for digesting lactose).

Additionally, when people drink milk, over time there are changes in the composition of the gut bacteria that make milk digestion easier. Lactase-producing bacteria found in the gut become the probiotic and as they feed on lactose, that becomes their selected prebiotic (food that bacteria chose to digest or eat). Over time the populations of these lactose-loving probiotic bacteria increase when they are fed lactose from dairy products.

The various milk proteins, immunoglobins, enzymes, fats and sugars are “qualitatively similar” between human breastmilk and cow milk. However, they are “quantitatively different” and appear at different levels and amounts in cow milk versus human milk. The same would be true for other bovine milks. The similarities are why humans can drink raw milk from cows, goats, and other animals. 

Milk’s Benefits Can’t Be Extracted

Many raw milk researchers are focused on finding ways to extract beneficial elements from raw milk. However, these elements are designed to work together with the full complement of many different macro- and micro- nutrients, enzymes, probiotics, etc in whole raw milk.

New products made with bio-actives extracted from raw milk will likely be met with suspicion, as well they should. The health benefits from whole, raw milk are the result of a complex interplay of bio-actives. Outside of the whole food matrix, those bio-actives are incomplete and not as effective as in their natural state.

Milk Fat is Essential to Its Beneficial Properties

Butterfat in milk is an essential part of milk’s overall beneficial properties. This fat is known to benefit brain development, immune system development, intestinal development, and the composition of the gut microbiota.

Butter fat globules are three-layer thick capsules that come in different sizes. The three-layered capsules are used by the gut as fiber; they also provide butyrate and butyric acids which are highly beneficial and healing to the lower gut. 60% of the bioactive elements found in raw milk are “carried on or inside” the fat globule. This says so much about skim milk, which has lost much of its beneficial value with the removal of the fat.

Researchers discovered that the fat globules in the milk are smaller in cows fed a high energy diet with high stress levels, such as cows being kept in concentrated animal feeding operations (CAFOs). The smaller fat globules in the milk do not contain bacteria inside that could ride through the stomach to the lower gut.

In contrast, the fat globules are larger in cows fed a low energy diet and under low stress levels (such as cows in pasture-based operations).  These larger fat globules carry bacteria inside of them. It is thought that the fat cell may act as a protective carrier vessel to carry bacteria though the stomach acid environment into the lower gut where they may be beneficial.

Pasteurization Damages and Denatures Milk

Pasteurization damages milk such that it becomes oxidated, highly allergenic, and hard to digest. It is a common protocol to pasteurize milk up to 3 or 4 times to achieve longer shelf life and assure that the milk is completely dead, with no regard for the essential and beneficial bio-actives that are destroyed in the process. 

Raw milk contains everything it needs to digest itself. Raw milk contains enzymes and bacteria that help create more enzymes to digest raw milk and all the sub elements. Milk maldigestion has been over simplified. It is not just lactose; it is the proteins and fats that also need help with digestion.

After pasteurization the bioactive elements needed for milk to digest itself are missing! Fats, proteins, and sugars all need digesting, but their enzymes and digestive bacteria are denatured or dead.  Without active enzymes, digestion of fat (via lipase) and proteins (via protease) is inhibited. This results in maldigestion in some consumers. 

Whereas raw milk helps to build immune system strength, pasteurized milk does not build up the immune system. Heat denatures the functional proteins and does not allow cellular direction. This can result in cellular confusion and chaos.

Raw whey proteins are highly anti-inflammatory and have many health benefits. The raw whey health benefit findings are consistent with other researchers in the Netherlands, including Dr. Ton Baars’ research on whey proteins showing that they stabilize MAST cells, control histamine release, and reduce allergies.

However, all whey is required to be pasteurized in the USA as per the Food and Drug Administration (FDA) and Pasteurized Milk Ordinance. Whey proteins are destroyed by processing and are highly sensitive to heat. One researcher has been frustrated in trying to extract the beneficial components from pasteurized whey. The heating of whey makes the components “sticky” such that they plug up the ultrafiltration micropores. Therefore, ultra filtration cannot be used to extract whey components from pasteurized whey.

New Pasteurization Technologies Cause Less Damage Than Traditional Heat Pasteurization

As an alternative to heat-based pasteurization, researchers are studying other methods such as high pressure (HPP), ultrafiltration, and ultraviolet (UV) light. These methods are effective at inactivating bacteria and less harmful to milk than heat-based pasteurization. For instance, both high pressure processing and ultraviolet processing preserve some of the bioactive milk proteins better than heat-based pasteurization.

Nonetheless, milk processors in the USA are resisting the use of these new technologies. In some other countries, UV and HPP are being successfully used, but in the USA the FDA continues to represent processors’ interests and thereby block the ability to innovate with these alternatives to heat processing. This failure to innovate with HPP, UV or Ultrafiltration is creating a loss of consumer interest in pasteurized milk as people continue to suffer from maldigestion when consuming pasteurized milk.

In Studies, 20,000+ Kids Drank Raw Milk With NO Milk-Related Illnesses

The pioneering PARSIFAL and GABRIELA studies of more than 55,000 kids in Europe really set the international high bar for studies on raw milk. The overall findings included reduced rates of asthma, eczema, respiratory illnesses, fevers, allergies, and ear infections in children who drank raw milk.

At the symposium, it was emphasized that during all of those studies and over twenty years of research, there was never a “red flag event.” A red flag event would be a reported illness from raw milk consumption. The studies included data from more than 20,000 children who drank raw milk, and there was not a single red flag event!

Yet, at the end of each of the peer reviewed and journal published articles, there is a disclaimer that says something such as, “even though there are health benefits to consuming raw milk, the researchers can not recommend raw milk because of the risks of raw milk consumption.” This disclaimer was included because peer review and journal publication political pressures demanded it, despite the fact that there was no basis in the research data.

Dr. Markus Ege MD and Mark McAfee, in Cork Ireland at the IMGC symposium 2023

Raw Milk Provides Sustainability for Farmers and Superb Nutrition for Consumers

Farmers have been denied fair markets for their dairy products for more than a century. All of the value-added efforts are happening after products leave the farm. Milk processors continue to ensure that farmers are paid low prices for their milk, resulting in the loss of thousands of family farms. However, raw milk provides a pathway to sustainability and life satisfaction for dairy farmers.

Raw milk presents a unique farmstead product that brings all the added value back to the farmer with an incentive to work on quality. By selling directly to consumers, raw milk farmers are able to obtain greater financial rewards for their work, while consumers benefit from the improved flavor and nutrition. It’s a win-win for farmers and consumers!

Raw milk that is carefully and intentionally produced for direct human consumption is a low-risk food. This type of raw milk is wholly different from raw milk being produced in unhygienic conditions. Raw milk intended for direct human consumption is produced in sanitary conditions, with much care to ensure that the animals are healthy and that the milk is clean. This type of raw milk is tested often and held to rigorous standards to ensure that it is being produced in a way that discourages pathogen growth.

By combining nature’s blueprints, the bio-actives found in whole raw milk, standards for good production practices and modern testing systems, RAWMI Listed farmers are nourishing consumers safely. Congrats to all of the RAWMI Listed pioneers! 

Join Us for Raw Milk Training in Oregon June 17-18

On June 17-18 2022, the Raw Milk Institute (RAWMI) will be providing Raw Milk Risk Management training in Oregon. This training is will be done in collaboration with Cast Iron Farm (RAWMI Listed farm in Oregon).


About the Training

This 2-day intensive RAWMI training workshop will focus on the benefits of raw milk, grass-to-glass identification of risks, development of a risk management plan, and lessons learned from other raw milk dairies. It is our goal to assure that raw milk is safe and continues to be freely available for both farmers and consumers in Oregon.

The training will be hosted at Cast Iron Farm in McMinnville, Oregon. We'll be providing lots of practical tips for the production of safe raw milk. The training will include formal presentations as well as demonstrations and tours at Cast Iron Farm. This training has been shown to reduce outbreaks and illnesses, increase safety, and lower insurance costs.


Cost and Registration

The cost for this 2-day training workshop is only $35.

If the cost is a barrier, feel free to contact Christine at Cast Iron Farm to learn about potential scholarships.

You can register for the class here:

http://castironfarm.com/rawmi-training-june-2023/


Class Schedule

Saturday June 17th

  • 9:30am - Arrival and introductions

  • 10:00am - 45 minute presentation by Oregon Department of Ag outlining the new CAFO regulations for anyone owning dairy animals.  This will include time for Q&A. If you do not feel comfortable attending a presentation given by the state agency, feel free to join us after lunch.

  • noon-1pm - Light lunch and snacks

  • 1pm-3pm - RAWMI presentation by Mark McAfee on health benefits of raw milk, safety and risks of raw milk

  • 3pm-3:20pm - Stretch break

  • 3:30pm-5pm - RAWMI presentation on raw milk risk management from grass-to-glass

Sunday June 18th

  • 9:30am - Milking demonstration and tour of Cast Iron Farm

  • 10:30am-noon - RAWMI presentation about raw milk testing and and building a successful raw milk business

  • noon-1pm - Light lunch and snacks

  • 1pm - One-on-one questions and consultations with RAWMI to answer all your questions

Sunday afternoon tours of Godspeed Hollow, another RAWMI listed farm 20 minutes from Mcmminnville, can be arranged by appointment for those interested.

RAWMI Annual Report for 2021-2022

The Raw Milk Institute (RAWMI) is on a mission to improve the safety and quality of raw milk and raw milk products through farmer training, rigorous raw milk standards, raw milk research, and improving consumer education.

In 2021, RAWMI was awarded a 3rd grant for $50k from the Regenerative Agriculture Foundation (RAF) to further our work. RAWMI matches an economic benefit of stewardship of pastures and soils to high value raw dairy products for consumers. Safe raw milk from pastured cows can sustain the farm financially while the grazing improves the soils.

With the 3rd grant from RAF, RAWMI was able to accomplish much towards the overall goal of universal access to safe raw milk. With the unique continuing challenges of 2021, RAWMI was able to carry on with making progress through the latest methods and models for training and outreach.

Over the last year, RAWMI:

  • Trained over 250 farmers, legislators, university professors, and consumers on raw milk benefits and risk management

  • Prepared and presented a 1.5 hour training course for dairy farmers who are considering the switch to raw milk, for the Massachusetts Northeast Organic Farmers Association (NOFA-MASS)

  • Developed 17-part Raw Milk Risk Management online video training series for raw milk farmers, which has been accessed by hundreds of additional farmers

  • Worked with state and local regulators in Montana to develop a model for training raw milk farmers

  • LISTED six new farms in Virginia, California, Michigan, British Columbia Canada, North Carolina, and Arkansas, who each went through the process of developing an individualized Risk Assessment and Management Plan (RAMP) for managing the health and hygiene of their unique farms

  • Provided one-on-one mentoring in the production of low-risk raw milk to over 30 additional farms in California, Michigan, Virginia, Montana, Pennsylvania, Texas, Idaho, Vermont, Iowa, North Dakota, Washington, Oregon, New Zealand, Czech Republic, Ontario Canada, and British Columbia Canada

  • Hosted quarterly meetings for LISTED farmers, which allow the farmers to stay up-to-date on the latest lessons learned for safe raw milk

  • Performed an independent research study on pathogen growth in raw milk

  • Amassed hundreds of raw milk test data from RAWMI LISTED farms 

  • Attended and sponsored International Milk Genomics Consortium Conference

  • Worked with researchers from Spectacular Labs who are developing on-farm technology for pathogen testing

  • Worked towards legalization of interstate raw butter and increased legal access to raw milk in Iowa and Canada (with Canadian Artisan Dairy Alliance)

  • Published 9 content pieces on the RAWMI website and developed new brochure on the Benefits of Raw Milk

  • Developed on-farm lab training materials and provided on-farm lab sponsorships to 5 farms

Raw Milk Training

RAWMI taught about raw milk health benefits and safety throughout the United States via web-based training. Whenever RAWMI teaches about raw milk risk management, soil and conditions management are emphasized as key elements in creating healthy, sustainable farms.

Dairy animals grazing on pastures provide a critical link to the soil biome and restorative farm practices. Pasture-based dairy farms produce healthy soils that are rehabilitated and renewed through the cycle of returning organic carbon to the soil in the form of plants biomass and manure. The resulting food that is harvested by either the animals or the farmer is rich in nutritional elements needed for human health. 

Real-Time Training Courses

Via Zoom and podcast, raw milk and organic farming training was presented to over 250 farmers, legislators, university professors, university students, and consumers in association with the following:

  • Massachusetts Northeast Organic Farmers Association (NOFA-Mass)

  • Rutgers University

  • Here’s to Your Health podcast with Josh Lane

On-Demand Training Course

RAWMI developed a 17-part video training series on Raw Milk Risk Management. This training series is now available for FREE on both the RAWMI website and Vimeo.  This video training has been accessed by hundreds of farmers.

Raw Milk Support in Montana

In Montana, raw milk was recently legalized with no regulatory oversight with the adoption of SB199.  This seeming victory for food freedom has the potential to go awry if raw dairy farmers are not properly trained in the production of low-risk raw milk. 

After an outbreak of Campylobacter was tied to one raw dairy farm in Montana, RAWMI was contacted and became heavily involved in helping the farmer learn best practices for raw milk production, install an on-farm lab for milk bacterial testing, and build better facilities for ongoing production of safe raw milk.

RAWMI is now collaborating with state and local regulators to develop a model for training Montana raw milk farmers in the production of low-risk raw milk. In partnership with Alternative Energy Resources Organization (AERO), RAWMI was awarded a small grant for $5k to cover travel costs for onsite training in Montana later in 2022. This training program will help in ensuring that the legalization of raw milk in Montana is a long-term success.  

Farmer Mentoring  

RAWMI worked with individual farmers across the United States, Canada, and internationally. RAWMI provided one-on-one mentoring and troubleshooting support for low-risk raw milk production, including helping farmers optimize their raw milk production, overcome problems in their milk systems and testing, and learn more about successful business practices.  This mentorship benefited farmers in:

  • California

  • Idaho

  • Iowa

  • Michigan

  • Montana

  • North Dakota

  • Oregon

  • Pennsylvania

  • Texas

  • Vermont

  • Virginia

  • Washington

  • New Zealand

  • Czech Republic

  • British Columbia, Canada

  • Ontario, Canada

RAWMI LISTED Farms

RAWMI LISTED farmers are dedicated to producing clean, safe raw milk. The RAWMI listing process involves the development of individualized Risk Assessment and Management Plans (RAMPs) for managing the health and hygiene of each unique farm. RAWMI LISTED farms submit test data monthly to show that they are in compliance with RAWMI Common Standards, which target a rolling three-month average of <5,000 standard plate count (SPC) and <10 coliforms per ml of raw milk.

In the last year, RAWMI LISTED six more farms, in Virginia, California, Michigan, British Columbia Canada, North Carolina, and Arkansas. To-date, RAWMI has LISTED 29 farms, and there are currently 22 active LISTED farms in the United States and Canada.

RAWMI provided continuing support to all LISTED farmers to enable sustained excellence in low-risk raw milk. This included quarterly meetings for LISTED farmers, which allow the farmers to stay up-to-date on the latest lessons learned for safe raw milk, exchange ideas for improvements, and collaborate with the RAWMI Board of directors.

Raw Milk Research and Science

RAWMI’s mission includes supporting raw milk research and science. Through this work, RAWMI helps raw milk become safer and more accepted by regulatory agencies.

Pathogen Growth Study

In order to generate a stronger scientific basis for assessments of risks of pathogen growth in raw milk, RAWMI commissioned a pilot study on pathogen growth performed by an independent 3rd party lab certified to perform pathogen testing, Food Safety Net Services (FSNS).  This pilot study was partially paid for through donations. 

In this pilot study, samples of well-produced raw milk were purposely inoculated at two levels with the four main pathogens of concern for raw milk: E coli 0157:H7, Salmonella spp., Campylobacter spp., and Listeria monocytogenes. The objective of this pilot study was to document growth characteristics of these pathogens in carefully produced raw milk over a period of 14 days when stored at the refrigeration temperature recommended by FDA and USDA.

The most relevant finding of the study was that at moderate Inoculum Level I, no pathogen growth was observed through at least 6 days of refrigerated storage. Over the study period of 14 days, the counts per mL of E coli 0157:H7, Salmonella spp., and Campylobacter spp. decreased over time. These results indicate that, when stored at the recommended refrigerator temperature, moderate to high counts of E coli 0157:H7, Salmonella spp., and Campylobacter spp. did not multiply over time in raw milk. Listeria monocytogenes exhibited some growth in this study after 9 days of refrigeration at both moderate- and high-level inoculum levels.

Raw Milk Bacterial Test Data

RAWMI LISTED farmers test their milk at least monthly for coliforms and Standard Plate Count (SPC). These tests provide a way to measure the amount of bacteria present in the milk, as well as providing a measure of the overall hygiene and cleanliness of the milk. Monthly testing serves as a useful confirmation step for ensuring that raw milk is being produced in a way that discourages pathogen growth and is therefore low-risk.

Test data from LISTED farms is submitted to RAWMI monthly. RAWMI amassed hundreds of test data from RAWMI LISTED farms over the last year.  This data can be used for raw milk research and demonstrates that low-risk raw milk is achievable on both small-scale and large-scale raw dairy farms.

International Milk Genomics Consortium

RAWMI was a sponsor of the 18th International Milk Genomics Consortium (IMGC) and attended the virtual IMGC conference. As part of that conference, RAWMI is now engaged with international research and relationships with PhD researchers across the world. The IMGC provides access to the most leading-edge studies on milk genomics.

An abstract about the pathogen growth pilot study is being prepared for presentation at the 19th IMGC conference later in 2022.

Development of On-Farm Pathogen Testing Technology

On-farm pathogen testing for raw milk has been considered too risky due to the potential for cross-contamination and inadvertent pathogen release.  However, researchers from Spectacular Labs are developing new technology for rapid on-farm pathogen testing. RAWMI collaborated with Spectacular Labs by providing a real-world farm environment where they could test their concept.

Raw Dairy Legalization and Support

RAWMI continued to collaborate with the Farm-to-Consumer Legal Defense Fund (FTCLDF) towards the legalization of raw butter. Raw butter is an exceptionally nutritious food. For instance, the enzyme alkaline phosphatase (ALP) is found in the butter fat membrane that covers fat globules. ALP decreases inflammation in the body; it is associated with good health and less chronic illness, such as cardiovascular disease and Type-2 diabetes. Raw milk has 4% butter fat, but raw butter contains 86% fat and thus it is very high in alkaline phosphatase.  ALP enzyme is destroyed by pasteurization. The case for legalization of raw butter is currently in Federal Appeals Court, and the next step is the US Supreme Court.

RAWMI worked towards legalization of raw milk in specific states and countries.  RAWMI provided support for lawmakers and farmers who were proposing a bill to legalize raw milk in Iowa.  Additionally, RAWMI collaborated with the Canadian Artisan Dairy Alliance, who is working towards legalization of raw milk in Canada.

RAWMI also created outreach materials for educating state agriculture departments about the benefits of raw milk for dairy farmers. RAWMI mailed letters to state agriculture departments all across the USA.

Raw Dairy Educational Outreach

RAWMI created educational materials and articles for raw milk consumers and the general public. Numerous articles were published to the RAWMI website and social media, with a wide array of topics including:

  • Allergies and raw milk

  • Profiles of 6 raw milk farmers across the USA and Canada

  • “It’s Time to Go Raw” seminar for organic dairy farmers

  • Pathogen growth in raw milk

  • Importance of predictive microbiology for raw milk risk assessment

  • Breastfeeding and peanut allergies

  • Benefits of milk on osteoarthritis

  • Raw milk and protection against eczema

  • Nutritional benefits of raw milk

  • How and why to make milk kefir

  • Dairy foods and fall prevention in older adults

  • Benefits of pasture-based farming

On-Farm Lab Training and Sponsorships

Frequent bacterial testing of raw milk is one of the pillars of producing low-risk raw milk. However, milk testing costs can be an ongoing financial burden which make small-scale farmers hesitant to test their milk often. On-farm testing is a great solution to this dilemma.

On-farm lab testing is a powerful tool for raw milk farmers.  It allows for frequent testing, so farmers can better identify issues before they turn into big problems, and it also helps immeasurably with troubleshooting when needed.  On-farm labs require an initial investment of $800-$1,000, but once the lab is in-place the cost per test is only $1-$3. With RAWMI’s sponsorship, five additional farms were able to build their own on-farm labs for testing coliforms and Standard Plate Count.

RAWMI also created educational materials about on-farm labs, including materials lists, how-to guides, and methods for using different brands of testing media.

Why is Predictive Microbiology Crucial to Raw Milk Risk Assessment?

Earlier this month, readers of the feature article written by Sarah Smith, my colleague at the Raw Milk Institute (RAWMI), learned about pathogen growth in raw milk. RAWMI contracted with an independent laboratory to conduct a pilot study with an experimental design based on published studies on Predictive Microbiology, the science supporting models of the growth and survival of microbes under different experimental conditions. This article provides readers with more information about what Predictive Microbiology is and why it is important to dairy farmers and raw milk consumers in the 21st century.

Why is Predictive Microbiology important to dairy farmers and raw milk consumers?

Awareness of Predictive Microbiology is important because pathogen growth is modeled in the Exposure Assessment portion of Microbial Risk Assessments (MRAs; FDA/FSIS, 2003; FSANZ, 2009), and the models selected often intentionally overestimate pathogen growth by design, as ‘fail-safe’ models (Tamplin et al., 2002; Coleman et al., 2003a,b; Ross et al., 2003; Coleman, 2021). In other words, regulators rely on predictive microbiology models in estimating the level of risk, and the models that have been available thus far typically intentionally overestimate the risk of pathogen growth. 

The advantage for risk managers and regulators in selecting policies based on ‘fail-safe’ models that overestimate growth is the appearance of minimizing public health breaches or ‘failures’ (e.g., illnesses or outbreaks) if anything goes wrong along the food safety chain from production to consumption. The disadvantage for dairy farmers and raw milk consumers is that the growth models applied for raw milk MRAs are wrong, based on intentionally biased experiments that overestimate actual pathogen growth in raw foods and thus overestimate risk of illness to consumers.

For a quick overview of MRA, see the text box and figure in the forthcoming May 2022 article entitled Raw Milk Risks from a Microbiologist’s Perspective that I prepared for Weston A. Price Foundation’s Wise Traditions journal.

Science of Predictive Microbiology

Microbiologists including those at the USDA’s Agricultural Research Service in Wyndmoor, PA, began designing ‘factorial’ experiments for modeling pathogen growth in the 1990s, selecting rich nutrient culture broths amenable to testing a wide variety of levels of different ‘factors’ that influence microbial growth. The study designs were inexpensive and accurate, compared to more expensive and more complex analysis for different foods. The data from these experiments are generally well validated experimentally: that is, for growth in pure culture broths.

Such data formed the basis of free online tools for predicting growth, including the USDA’s Pathogen Modeling Program (PMP). The experiments were designed to include multiple levels of different factors including pH and salt or water activity that are similar to levels that can be measured in foods. The advantages of such tools based on broth culture experiments for government and academic risk assessors are that they might extrapolate the broth culture growth models to foods with similar levels of factors measured, and assume the models are still accurate. This could be beneficial because conducting pathogen growth studies in foods under diverse conditions of temperature and storage is expensive and time consuming.

Screenshot from USDA PMP

Now, with access to PMP, the risk assessor can select the inputs from those tested in multiple factor broth culture experiments from the sliders illustrated in the screen shot from PMP on the left. I illustrated a growth scenario with an appropriate refrigeration temperature (5°C or 41°F, from a range of 5-42°C or 41-107.6°F) and a pH (6.5, from a range of 4.5-8.5) relevant to raw milk.

The first problem for dairy farmers and raw milk consumers is that models based on optimal growth of pathogens in pure cultures described by rich broth culture models overestimate actual pathogen growth in raw milk. As early as 1997, university researchers published experimental results reporting that the rate of growth of the pathogen E. coli O157:H7 was significantly slower in raw milk than pasteurized (Wang et al., 1997). The authors noted that the difference in growth rates was likely due to the natural microbes in raw milk that outcompete pathogens and limit their growth in raw, not pasteurized, milk.

Another problem for farmers and consumers is that the broth culture study designs are typically biased by inclusion of only high initial pathogen levels (> 3 log10 colony forming units (CFU) per mL or >1,000 CFU/mL, from a range of 3 to 5.9 log10 CFU/mL).  Even in rich culture broth, growth rates are lower at low inoculum levels (~1 CFU/mL; Coleman et al., 2003). Biased growth models (based on rich nutrient broth, high initial inoculum, and/or absence of natural milk microbiota) result in biased MRAs that overestimate raw milk risks.

You may not be surprised to learn that some microbial risk assessment teams, including the Food Standards Australia New Zealand team (FSANZ, 2009), selected rich culture broth studies (Salter et al., 1998; Ross et al., 2003) that measured growth of harmless or commensal E. coli strains that are part of our healthy gut microbiota, not even pathogenic strains like O157:H7 that can cause illness and grow at slower rates. FSANZ excluded an available study on growth of the pathogen E. coli O157:H7 itself in raw and pasteurized milk reported by Wang and esteemed food scientist Mike Doyle at the University of Georgia (Wang et al., 1997).

Why do you think the FSANZ team decided not to cite Mike Doyle’s study, a study they should have known about? Likely because it measured lower pathogen growth rates in raw milk than in pasteurized milk (and broth). Thus, it seems that FSANZ likely excluded the study because the results did not support their notion that raw milk is inherently dangerous, and more dangerous than pasteurized milk. A short plain language summary prepared by the Australian Raw Milk Movement (ARMM) and the full 73-page technical report that I prepared for them (Coleman, 2021) are both available on the ARMM website. See the technical report for the more detailed section on pathogen growth and microbial ecology (pp. 30-40 of the 73-page report).

Why is Inoculum Level Important to Predict Growth in Raw Milk?

Well-produced raw milk has relatively low levels of coliform and aerobic bacteria. Farmers who follow RAWMI’s Common Standards for raw milk aim for coliform counts of <10 CFU/mL and Standard Plate Counts of <5,000 CFU/mL. However, don’t let these low coliform counts or low Standard Plate Counts in raw milk fool you.

Raw mammalian milks are complex ecosystems with dense and diverse microbes that benefit health. The natural microbes in raw milks have different requirements for culturing them, so studies that rely on specific culture media for assessing what microbes are present in raw milk are biased. The development of genomic methods that estimate presence of microbial genes or gene products in raw milks without culturing are more reliable for describing the raw milk microbes or microbiota (Oikonomou et al, 2020). Such studies are transforming our understanding of the microbiota of many natural systems in the recent decade, including raw mammalian milks.

The dense and diverse microbiota predominant in raw milk from healthy mammals is illustrated in the figure below by Oikonomou and colleagues (2020; authors’ Figure 2, pg. 4 of 15). The bacteria listed in red text were identified in the milk microbiota from all five types of mammals, bacteria in yellow from 3 or more mammals, and bacteria in blue in less than three mammals. None of these bacteria were identified as pathogens, but rather are natural microbes that appear to benefit human and animal offspring (and adult humans) by ‘seeding and feeding’ the gut. In other words, raw milk ‘seeds’ the gut with beneficial microbes and ‘feeds’ gut and microbial cells with nutrients. The raw milk microbiota also stimulates proper maturation and function of immune, neural, and respiratory systems (Coleman et al., 2021a,b; Dietert et al., 2022).

Oikonomou, et al., “Milk microbiota: what are we exactly talking about?Frontiers in Microbiology

Predominant beneficial microbes including Pseudomonas, Staphylococcus, and certain lactic acid bacteria or LABs (including not just the familiar Lactobacillus, but also 11 other microbes: Lactococcus, Enterococcus, Streptococcus, Carnobacterium, Vagococcus, Leuconostoc, Oenococcus, Pediococcus, Tetragonococcus, Aerococcus and Weissella) are known to outcompete specific pathogens at refrigeration temperatures (Coleman et al., 2003a; Reuben et al., 2020).

A recent study in the Journal of Dairy Science (Reuben et al., 2020) illustrates the importance of incorporating data on the microbiota and microbial ecology of raw milks into Predictive Microbiology models and MRAs.  The authors demonstrated not merely suppression of growth of all pathogens tested (E. coli O157:H7, L. monocytogenes, and Salmonella) by LAB strains isolated from raw cow milk, but also ‘competitive exclusion’ of these pathogens inoculated at both 103 and 106 log10 CFU/mL. Clearly, the natural milk microbiota influences growth of pathogens.

In summary, the raw milk ecosystem differs greatly from sterile nutrient broth. If an MRA relies on pathogen growth models based on broth cultures, be skeptical of its value for predicting pathogen growth in raw milk. Pathogen growth rates in raw milk are likely lower due to suppression or exclusion of pathogens by the natural raw milk microbiota and compounds produced by these beneficial microbes.

How do Microbes in Raw Milk Outcompete and Exclude Pathogens?

The peer-reviewed literature is expanding as researchers document the mechanisms or pathways by which the raw milk microbes benefit health. Microbes in raw milk produce vitamins and enzymes that enhance gut health. Microbes also produce antimicrobial compounds including proteins (bacteriocins) and organic acids like lactic acid that reduce pH and indirectly suppress pathogen growth, modulate the immune system, and reduce inflammation. 

The natural raw milk microbiota also enhances gut mucosal barrier function, and competes with pathogens in the gut nutritionally and spatially (colonizing potential bacterial binding sites, enhancing ‘colonization resistance’ to pathogens, and reducing pathogen infection rates). Consider recent evidence for benefits and risks for the breastmilk microbiota (Coleman et al., 2021a,b) and the cow milk microbiota (Dietert et al., 2022). A large body of evidence also exists that documents mechanisms of interference of LABs with pathogens, including pathogen virulence expression.

Want More Perspectives from a Microbiologist and Risk Assessor?

Feel free to contact me for more information at peg@colemanscientific.org.

Key References Cited

  1. Coleman, M. E., Sandberg, S., & Anderson, S. A. (2003a). Impact of microbial ecology of meat and poultry products on predictions from exposure assessment scenarios for refrigerated storage. Risk Analysis: An International Journal, 23(1), 215-228.

  2. Coleman, M. E., Tamplin, M. L., Phillips, J. G., & Marmer, B. S. (2003b). Influence of agitation, inoculum density, pH, and strain on the growth parameters of Escherichia coli O157: H7—relevance to risk assessment. International Journal of Food Microbiology, 83(2), 147-160.

  3. Dietert, R. R., Coleman, M. E., North, D. W., & Stephenson, M. M. (2022). Nourishing the Human Holobiont to Reduce the Risk of Non-Communicable Diseases: A Cow’s Milk Evidence Map Example. Applied Microbiology, 2(1), 25-52.

  4. Food Standards Australia New Zealand (FSANZ). (2009). Microbiological Risk Assessment of Raw Cow Milk. Available at: https://www.foodstandards.gov.au/code/proposals/documents/-p1007%20ppps%20for%20raw%20milk%201ar%20sd1%20cow%20milk%20risk%20assessment.pdf.

  5. Oikonomou, G., Addis, M. F., Chassard, C., Nader-Macias, M. E. F., Grant, I., Delbès, C., ... & Even, S. (2020). Milk microbiota: what are we exactly talking about? Frontiers in Microbiology, 11, 60.

  6. Ross, T., Ratkowsky, D. A., Mellefont, L. A., & McMeekin, T. A. (2003). Modelling the effects of temperature, water activity, pH and lactic acid concentration on the growth rate of Escherichia coli. International Journal of Food Microbiology, 82(1), 33-43.

  7. Reuben, R. C., Roy, P. C., Sarkar, S. L., Alam, A. R. U., & Jahid, I. K. (2020). Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties. Journal of Dairy Science, 103(2), 1223-1237.

  8. Salter, M. A., Ross, T., & McMeekin, T. A. (1998). Applicability of a model for non-pathogenic Escherichia coli for predicting the growth of pathogenic Escherichia coli. Journal of Applied Microbiology, 85(2), 357-364.

  9. Tamplin, M. L. (2002). Growth of Escherichia coli O157: H7 in raw ground beef stored at 10 C and the influence of competitive bacterial flora, strain variation, and fat level. Journal of Food Protection, 65(10), 1535-1540.

  10. Wang, G., Zhao, T., & Doyle, M. P. (1997). Survival and growth of Escherichia coli O157: H7 in unpasteurized and pasteurized milk. Journal of Food Protection, 60(6), 610-613.

NOW AVAILABLE! RAWMI Risk Management Training Video Series

The Raw Milk Institute (RAWMI) has trained hundreds of farmers through in-person workshops around the USA and Canada.  Although our training is typically only taught in-person, the recent travel challenges led to us teaching this course via Zoom.  So now we are able to share this training with all of you!

RAWMI’s Risk Management Training Workshop is now available to watch on Vimeo here:

About the Training

This RAWMI training focuses on:

  • benefits of raw milk,

  • grass-to-glass identification of risks,

  • development of a risk management plan, and

  • lessons learned from other raw milk dairies.

It includes lots of practical tips for the production of safe raw milk. This training has been shown to reduce outbreaks and illnesses, increase safety, and lower insurance costs.

Links to Specific Segments

The overall training course is 4&1/2 hours long, but we have broken that down into 17 smaller segments so that you can easily find the sections you want to watch.  

WORKSHOP OVERVIEW: 

PART 1 – Introductions and About Raw Milk Institute  

PART 2 – Raw Milk History and Opposition 

PART 3 – Raw Milk Benefits 

PART 4 – Raw Milk Risks and RAWMI Method 

PART 5 – Introduction to Grass-to-Glass Risk Management   

PART 6 – Small-Scale and Large-Scale Raw Milk Production 

PART 7 – Risk Minimization: Grass, Pasture, and Water 

PART 8 – Risk Minimization: Animal Health and Biosecurity 

PART 9 – Risk Minimization: Milking and Udder Prep 

PART 10 – Risk Minimization: Management 

PART 11 – Q&A for Parts 1-10 

PART 12 – Risk Minimization: Management (cont.) 

PART 13 – Risk Minimization: Management (cont.) 

PART 14 – Risk Minimization: Glass, Bottling, and Inspections 

PART 15 – Raw Milk Testing 

PART16 – Why to Become RAWMI LISTED 

PART 17 – Conclusion and Final Q&A

 

What Attendees Have Said

Here is some of the feedback we received from attendees at this training: 

“Excellent presentation that every single person who dairies for themselves and their family should take and learn from. Thank you very much.”

 

“This has been excellent!  ONLINE was so helpful as it’s hard to travel and be away.”

 

“For me, the combination of technical information and anecdotes is very effective for explaining why the RAWMI methods are important and how they solve a raw milk producer challenges. I came away with practical solutions to increase the quality/value of our milk and farm. Thank you." 

 

“I left the Zoom meeting with a very clear understanding of what we are doing right and where we need to make changes. Beyond that, though, I left inspired to pursue excellence and cast a clear vision to everyone who is joining me in this endeavor.”  

 

“The information was also rich and informative. I learned a ton and the systematic way you presented it was easy to follow and comprehensive.” 

“I cannot wait to move forward with you in becoming RAWMI Listed. We will be making some changes as we form our RAMP plan. We have already adjusted our milk chilling and have seen an improvement in flavor and longevity.”  

 

“Thank you for all you do. I have no doubt history will look back at the RAWMI as having played a crucial role in reforming raw milk production, health, and nutrition.”

New Raw Milk Research from the 2020 IMGC Symposium

Takeaways from a RAWMI Farmer

IMGC.png

The 17th International Milk Genomics Consortium (IMGC) Symposium was held on October 13-16, 2020. This year’s conference was presented virtually, to an audience of more than 270 people from around the world. As a raw milk farmer and Chairman of the Raw Milk Institute (RAWMI), this was the 10th annual symposium that I have attended.  

Through attending these conferences year-after-year, I have developed many close relationships with university and PhD scientists.  Although the virtual format didn’t allow much in terms of one-on-one connections and conversations with researchers, nonetheless there were many fascinating presentations this year.  

This year’s conference focused on health impacts of milk, with particular focus on immune health, gut microbiome, and breastfeeding in relation to COVID-19. You can see a complete list of all presentations here. There were several presentations related to raw milk which I want to share with the raw milk community.  

University of California-Davis

University of California-Davis

Loss of Allergy-Protective Capacity of Raw Cow’s Milk After Heat Treatment Coincides with Loss of Immune Active Whey Proteins

Ling Xiong, Wageningen University and Research, Wageningen, The Netherlands 

This study “aimed at achieving a better understanding of the underlying mechanism between heat damage to whey proteins and allergy development.” Raw milk has been correlated with anti-allergenic benefits, and heat-sensitive whey protein has been hypothesized to contribute to these benefits. In this study, “raw cow’s milk was heated for 30 min at 50, 60, 65, 70, 75, or 80 °C [122, 140, 149, 158, 167, or 176 °F]… The allergy-protective effect of differently heated milk samples were tested in a murine OVA-induced food allergy model.” 

This study “tested the various heat-treated milk samples for their native protein profile and their allergy-protective capacity... the allergy-protective effect of raw cow's milk is lost after heating milk for 30 min at 65 °C [149 °F] or higher. This loss of protection coincided with a reduction in native immunologically active whey proteins.” 

Heat treatment at 65 °C or higher destroyed allergy-protective capacity of raw milk in murine OVA-induced food allergy model. Xiong, et al.

Heat treatment at 65 °C or higher destroyed allergy-protective capacity of raw milk in murine OVA-induced food allergy model. Xiong, et al.

The whey protein in raw milk provides protection from allergies, asthma, and inflammation.  When heated above 149 °F, these properties are dramatically reduced or eliminated. This finding is an important confirmation of the unique beneficial properties of whole, unprocessed raw milk. Raw dairy products such as cheese, butter, and strained yogurts would not be expected to have such strong anti-allergenic benefits because they do not contain whey. 

All across the world, when raw cheeses are made the raw whey is drained off and either discarded, used as a fertilizer, or fed to animals such as pigs.  Raw whey protein is arguably one of the most vital components in raw milk and it is literally treated as a waste byproduct. Some raw whey is made into powder and sold as a health product. Most of the whey protein powders on the market are not raw, but are highly pasteurized, spray dried, and oxidized. These widely available whey products no longer have the bioactivity found in the raw form.  

The new research on the anti-allergenic benefits of raw whey shows that, instead of being discarded, the whey left over from making cheese has great potential. Researchers called for innovation to bring raw whey protein to the market for the benefit of human health.  

B. infantis EVC001 Colonization in Breastfed Infants Modulates Cytokine Profile Linked to Autoimmune and Allergic Diseases

Bethany Henrick, Evolve Biosystems Inc., Davis, CA, USA 

This research at UC Davis has been studying the effects of Bifidobacteria infantis EVC001 on gut microbiome and immune health. “The intestinal microbiome plays a critical role in the development of the immune system…Stool samples were collected at Day 6 (baseline) and day 60 of life from exclusively breastfed infants (n=40) randomly selected to receive either 1.8 x 1010 CFU B. infantis EVC001 daily for 21 days starting Day 7 postnatal (EVC001) or breast milk alone (controls).

“Importantly, infants fed B. infantis EVC001 produced significantly decreased levels of [proinflammatory cytokines], while [beneficial cytokine considered to reduce autoimmune and allergic diseases] levels were significantly increased…

“These findings suggest a novel immunomodulatory function of B. infantis in breastfed infants… and further imply this strain of bacteria may [be]… critically important in the reduction of… autoimmune and allergic diseases.” 

The researchers have identified that Bifidobacteria infantis is critical to the training and development of T-Cells, which play a central role in the immune system. Historically, Bifidobacteria dominated the microbiome of breastfed infants. These beneficial bacteria actively train naive T-Cells into protective “Killer T-Cells.” This is foundational and is essential to the development of the newborn infant’s immune system. Under the current set of societal and nutritional conditions, Bifidobacteria in newborns are reduced due to limited breast feeding, use of baby formulas and antibiotics, and high C-section rates. This new research demonstrates that supplementation with Bifidobacteria is likely to improve infants’ immune systems. 

Image from Bethany Henrick’s Presentation at the 2020 IMGC Symposium

Image from Bethany Henrick’s Presentation at the 2020 IMGC Symposium

Evidence of a Significant Secretory-IgA-Dominant SARS-CoV-2 Immune Response in Human Milk Following Recovery from COVID-19

Rebecca Powell, Icahn School of Medicine at Mount Sinai, New York, NY, USA

Researchers studied breastfeeding mothers and infants during the peak of the New York City COVID-19 outbreak in early 2020. It was found that COVID-19 positive mothers did not transfer the virus to their babies. Tests of the breastmilk of COVID-19 positive mothers found that there is a strong “SARS-CoV-2 immune response [in the form of antibodies] in human milk after infection in the majority of individuals.” Breastmilk from COVID-19 positive mothers contains antibodies which can then confer protection against COVID-19 to their breastfed babies. Interestingly, the milk from COVID-19 positive mothers has been shown to continue to contain COVID-19 antibodies even months after the infection.  

This is one of nature’s protective gifts. Mammalian mothers protect their young through breast milk and antibody sharing. This important fact has also lead other researchers to consider the use of immune milk from cows as a therapeutic food.  It was hypothesized that, if cows were exposed to coronavirus during the last stages of pregnancy, the colostrum they produced after calving would contain coronavirus antibodies.  

My own RAWMI LISTED dairy (Organic Pastures Dairy Company) worked with IMGC and UC Davis researchers in early 2020 to test this hypothesis in a pilot study.  The cows were exposed to a bovine coronavirus in late pregnancy, and their colostrum and milk were then tested after calving. It worked! Antibodies to coronavirus were found in the colostrum and milk after calving. This study is now being expanded at UC Davis using their own cows. Further work needs to be done to better understand any potential impact of antibodies in milk on older children and adults, who do not have permeable guts like young infants do.  

 

Milk, Nose, Gut: Microbiomes in the CHILD Cohort Study

Meghan Azad, University of Manitoba, Winnipeg, Canada 

The CHILD Cohort Study (www.childstudy.ca) is a study of 3,500 Canadian families from pregnancy onwards to understand the developmental origins of chronic diseases. This study has shown that breastfeeding and vaginal birth are associated with reduced risks of childhood asthma and obesity. These beneficial effects appear to be partly mediated by the infant gut microbiome, which is seeded with beneficial bacteria in the birth canal as well as through breastfeeding. Current research is focused on understanding “how breastfeeding practices and breast milk components (including bacteria, fungi, oligosaccharides, fatty acids, hormones and cytokines) shape the developing infant nasal and gut microbiomes and contribute to health and disease trajectories.”   

Raw milk from other mammals has been correlated with many of the same benefits as human breast milk. Like breast milk, raw milk contains a wide array of essential nutrients, fats, proteins, anti-inflammatory and digestive enzymes, bioavailable vitamins, and minerals, all in a natural form which is most easily utilized by the body.  

Image from Meghan Azad’s Presentation at the 2020 IMGC Symposium

Image from Meghan Azad’s Presentation at the 2020 IMGC Symposium

Difference in Levels of SARS-CoV-2 Spike Protein- and Nucleocapsid-Reactive SIgM/IgM, IgG and SIgA/IgA Antibodies in Human Milk

Veronique Demers Mathieu, Medolac Laboratories/University of Massachusetts Amherst, USA 

Researchers from the University of Massachusetts sought gain an understanding of the “presence and the levels of [COVID-19] antibodies” in breast milk. The researchers measured the amounts of various types of COVID-19 antibodies in breast milk samples from 41 women during the pandemic. They found that women who “had symptoms of viral respiratory infection during the last year” had higher levels of certain types of COVID-19 antibodies than women who had experienced no viral respiratory symptoms in the last year.  Heat treatment of the breast milk at 100°C (212 °F) for 30 minutes “completely inactivated” the antibodies. The researchers concluded that, “The presence of SARS-CoV-2-reactive antibodies in human milk could provide passive immunization to the breastfed infants.” 

This research has confirmed that antibodies are completely destroyed through heat treatment of milk. Breast milk must be raw in order to provide antibody protection to infants. This same science applies to raw milk from other mammals.

breastfeeding.png

Closing Remarks

The symposium ended with closing remarks by Dr. Bruce German and Dr. Jennifer Smilowitz from UC Davis. They discussed two important upcoming needs in the community of scientific research about milk:

  1. Defining breast milk as the keystone research target of 21st Century for the public research funding agencies of the world, and

  2. Positioning food as the first line of defense for nourishment and therapeutics in emerging infections of public health impact. 

In other words, raw milk is considered to be the most important area of research going forward. This is because raw milk contains the bioactive genomic secrets of life, and to a large degree determines how well the immune system and gut microbiome will function. When the science of raw milk is better understood, human health will be improved and more illnesses will be prevented. 

In summary, this conference confirmed the following.  

  • Raw milk is a whole bioactive superfood that nourishes and builds the immune system.

  • Heat destroys the bioactive elements in raw milk that impart health benefits.

  • Raw whey is a new market opportunity, yet innovation will be required because the FDA forbids sale of raw whey. Safe raw whey must be produced in the same ways that safe raw milk is produced.

  • Raw breast milk provides protection against COVID-19 to breastfeeding infants. There is a need for more research into the immune-protective benefits of raw milk from other mammals.