Raw Milk Science

Bird Flu and Raw Milk: Where is the Evidence?

We are pleased to share with you this balanced analysis of the risks of H5N1 bird flu from raw milk, from medical microbiologist Peg Coleman. Peg serves on the Advisory Board for Raw Milk Institute and she will be presenting a free webinar about Milkborne Risk Analysis (including a discussion of H5N1 avian influenza and raw milk) on Thursday May 9 at 11am Pacific / 2pm ET.

Recent risk communications from CDC , FDA, and USDA regarding transmission of influenza A sub-type H5N1 (highly pathogenic avian influenza virus or HPAI) to humans via raw milk include no supporting evidence of viral transmission from raw milk to humans in the peer-reviewed literature. CDC and USDA reported that the HPAI strains recently isolated in the US lack the genetic markers for viruses adapted to infect humans. An extensive body of scientific evidence from the peer-reviewed literature introduced herein does not support the assumption by these US government agencies that HPAI transmits to humans via milkborne or foodborne routes and causes disease. Nor does the scientific evidence support the recommendation that consumers should avoid raw milk and raw milk products.

One Detected Case: Worker Contact with BOTH Dead Birds and Affected Cows?

In March of 2024, dead wild birds on a TX dairy farm and unusual symptoms in older dairy cows (decreased lactation, low appetite, other clinical signs) triggered sampling of affected cows (oropharyngaeal swabs) and their milk. On March 25th, Texas Animal Health Commission confirmed samples were positive for HPAI. A dairy worker on this farm with eye inflammation was also confirmed positive for HPAI, though it is unclear if the worker had contact with both the dead birds and the affected cows. Similarly, it is unclear if dead cats on affected dairy farms were infected by contact with dead birds, milk, or other sources of viral contamination. 

On April 9th, the World Health Organization (WHO) stated the following about the TX case. “This is the first human infection with [HPAI (H5N1)] acquired from contact with infected cattle and the second confirmed human case of influenza A(H5N1) detected in the country. No additional associated cases of human infection with influenza A(H5N1) have been identified. Since the virus has not acquired mutations that facilitate transmission among humans and based on available information, WHO assesses the public health risk to the general population posed by this virus to be low and for occupationally exposed persons, the risk of infection is considered low-to-moderate.” In addition, the American Association of Bovine Practitioners (AABP) now recommends a new name, Bovine Influenza A Virus (BIAV) because the virus is not highly pathogenic in dairy cows.

The WHO lists the following factual information about avian influenza: i) “Direct contact with infected animals (through handling, culling, slaughtering or processing) or indirect contact (through environments contaminated with bodily fluids from infected animals) represent a risk for human infection.“; ii) “animal influenza viruses are distinct from human influenza viruses and do not easily transmit to and among humans;” and iii) sustained person-to-person transmission is not demonstrated.

Animal Contact is the Only Demonstrated Transmission Source

Of all the transmission sources reported in surveillance systems by CDC and other government agencies (animal contact, environmental, foodborne, person-to-person, and waterborne), the only demonstrated transmission source for HPAI transmission to humans is animal contact. In light of the body of evidence on HPAI transmission to humans by direct animal contact, not by foodborne transmission, risk communications to avoid consumption of raw milk and raw milk products do not appear to be based on scientific evidence, but on other factors.

An earlier risk assessment conducted by FDA and USDA (2010) determined that HPAI “is not considered to be a foodborne pathogen although virus had been isolated from poultry muscle and the interior of eggs”. This is consistent with current facts compiled by the WHO about avian influenza transmission to date: i) “Direct contact with infected animals (through handling, culling, slaughtering or processing) or indirect contact (through environments contaminated with bodily fluids from infected animals) represent a risk for human infection.“; ii) “animal influenza viruses are distinct from human influenza viruses and do not easily transmit to and among humans;” and iii) “sustained person-to-person transmission is not demonstrated”. Although HPAI was detected in milk from ill cows in TX, as in poultry muscle and eggs, no evidence supports foodborne transmission of HPAI to humans.

Antiviral Properties of Raw Milk

While no evidence supports milkborne or foodborne transmission of HPAI to humans, evidence does exist that demonstrates a multitude of well-characterized mechanistic factors that inactivate viruses and prevent foodborne illness. Key studies in the peer-reviewed literature are cited in brackets, with full references appended.

First, consider peer-reviewed studies demonstrating antiviral properties of a suite of bioactive components of raw mammalian milks, including bovine milk [4,5,7-9,12-14,16,17,19]. Multiple researchers note that some of the antiviral components of milk are likely function synergistically, meaning effects are greater in combination than independently, an observation particularly relevant in complex gut ecosystems of humans that include innate and adaptive immune systems. Many of these bioactive components of raw milk are also sensitive to heat and may be absent, inactive, or present in lower concentrations in pasteurized milks. Considering the extensive literature on antiviral activity in milk, clinical researchers [3] applied deep scientific knowledge to recommend that infants not be deprived of raw breastmilk due to the presence of viruses. The benefits of feeding raw breastmilk including its antiviral components to infants outweighs the very small risk of infection, from their perspective as clinical researchers, one associated with the Italian Association of Human Milk Banks.

Defense Against Pathogens in the Human Digestive Tract

Next, consider the gauntlet of defenses against foodborne pathogens in the human digestive tract [1,6,18]. These defenses include physical (stomach acidity, peristalsis), chemical (digestive enzymes), and cellular (innate and adaptive immune system, microbiota) factors that, acting simultaneously or sequentially, inactivate pathogens, including viruses, and/or suppress infectivity and virulence of ingested pathogens. Researchers [11] note that HPAI is an enveloped virus, susceptible to disruption and degradation in stomach acids, unlike the 16 viruses known to be transmitted to human by the oral route [6]. Further, FDA and USDA determined in 2010 that HPAI “is not considered to be a foodborne pathogen” even though virus was isolated from poultry muscle and the interior of eggs.

Host chemical and cellular defenses include:  complement; defensins; enzymes; interferons; interleukins; pattern recognition receptors (Toll-like receptors 3, 4, and 7; NOD-like receptors; RIG-1 receptors); and an array of host cells (dendritic cells, B cells, intestinal epithelial cells, macrophages, monocytes, natural killer cells, T cells) and cells of the gut-associated microbes or microbiota. Also, the gut microbiota include not only commensal (non-pathogenic) bacteria, but also commensal viruses that can modulate infectivity and virulence of pathogens [10].

CDC Data on Transmission Sources

Now, consider that the microbial ecology of raw milks including antiviral activity as described briefly above aligns with recent CDC data for all transmission sources from 2005 to 2020 [15]. This CDC dataset included 3,807 milkborne illnesses (2,111 associated with pasteurized milk) linked to bacterial pathogens, but lacks any viral illness associated with milk, raw or pasteurized. The predominant virus in this CDC dataset was norovirus, associated with 8,199 illnesses from leafy greens reported over this 16-year period. No norovirus illnesses or any other viral illnesses were reported in milk.

What is known about HPAI transmission to humans is that it is rare, requiring prolonged direct contact with infected, sick, and dead animals, generally birds, now dairy cows, that can lead to mild flu-like symptoms or eye inflammation, some progressing to fatal infections, according to WHO. Again, HPAI in humans is linked to transmission via animal contact, not by foods.

It seems that occupational exposure resulted in infection of a farm worker handling ill cows, with developed of one symptom in the worker, eye redness (conjunctivitis), consistent with transmission by animal contact. HPAI has been detected in dairy cows in Texas, Kansas, New Mexico and Michigan as of April 2. The dairy animals and rare humans affected have recovered.

Cross-disciplinary evidence demonstrates that raw milk from healthy cows is not inherently dangerous, consistent with the CDC evidence of trends for 2005-2020 [15] and evidence of benefits and risks [2]. There is no scientific evidence that HPAI in raw milk causes human disease.

Please consider the references below and pose questions in the comments. You may be interested to learn more about these recent peer-reviewed publications.

This article was originally published on Peg Coleman’s website here: https://www.colemanscientific.org/blog/2024/4/7/where-is-the-evidence

References

1.           Buchanan RL, Havelaar AH, Smith MA, Whiting RC, Julien E. The key events dose-response framework: its potential for application to foodborne pathogenic microorganisms. Critical Reviews in Food Science and Nutrition. 2009 Sep 22;49(8):718-28.

2.           Dietert RR, Coleman ME, North DW, Stephenson MM. Nourishing the human holobiont to reduce the risk of non-communicable diseases: a cow’s milk evidence map example. Applied Microbiology. 2021 Dec 30;2(1):25-52.

3.           Francese R, Peila C, Donalisio M, Lamberti C, Cirrincione S, Colombi N, Tonetto P, Cavallarin L, Bertino E, Moro GE, Coscia A. Viruses and human milk: transmission or protection?. Advances in Nutrition. 2023 Aug 20.

4.           Gallo V, Giansanti F, Arienzo A, Antonini G. Antiviral properties of whey proteins and their activity against SARS-CoV-2 infection. Journal of Functional Foods. 2022 Feb 1;89:104932.

5.           Gallo V, Arienzo A, Tomassetti F, Antonini G. Milk bioactive compounds and gut microbiota modulation: the role of whey proteins and milk oligosaccharides. Foods. 2024 Mar 16;13(6):907.

6.           Lockhart A, Mucida D, Parsa R. Immunity to enteric viruses. Immunity. 2022 May 10;55(5):800-18.

7.           Kaplan M, Şahutoğlu AS, Sarıtaş S, Duman H, Arslan A, Pekdemir B, Karav S. Role of milk glycome in prevention, treatment, and recovery of COVID-19. Frontiers in Nutrition. 2022 Nov 8;9:1033779.

8.           Oda H, Kolawole AO, Mirabelli C, Wakabayashi H, Tanaka M, Yamauchi K, Abe F, Wobus CE. Antiviral effects of bovine lactoferrin on human norovirus. Biochemistry and Cell Biology. 2021;99(1):166-72.

9.           Panon G, Tache S, Labie C. Antiviral substances in raw bovine milk active against bovine rotavirus and coronavirus. Journal of Food Protection. 1987 Oct 1;50(10):862-7.

10.         Pavia G, Marascio N, Matera G, Quirino A. Does the human gut virome contribute to host health or disease?. Viruses. 2023 Nov 17;15(11):2271.

11.         Sangsiriwut K, Uiprasertkul M, Payungporn S, Auewarakul P, Ungchusak K, Chantratita W, Puthavathana P. Complete Genomic Sequences of Highly Pathogenic H5N1 Avian Influenza Viruses Obtained Directly from Human Autopsy Specimens. Microbiol Resour Announc. 2018. 7(22):e01498-18. doi: 10.1128/MRA.01498-18. PMID: 30533850; PMCID: PMC6284082.

12.         Santos I, Silva M, Grácio M, Pedroso L, Lima A. Milk antiviral proteins and derived peptides against zoonoses. International Journal of Molecular Sciences. 2024. 25(3):1842.

13.         Schlusselhuber M, Godard J, Sebban M, Bernay B, Garon D, Seguin V, Oulyadi H, Desmasures N. Characterization of milkisin, a novel lipopeptide with antimicrobial properties produced by Pseudomonas sp. UCMA 17988 isolated from bovine raw milk. Frontiers in Microbiology. 2018. 9:355822.

14.         Singh P, Hernandez‐Rauda R, Peña‐Rodas O. Preventative and therapeutic potential of animal milk components against COVID‐19: A comprehensive review. Food Science & Nutrition. 2023. 11(6):2547-79.

15.         Stephenson MM, Coleman ME, Azzolina NA. Trends in burdens of disease by transmission source (USA, 2005–2020) and hazard identification for foods: focus on milkborne disease. Journal of Epidemiology and Global Health. 2024 Mar 28:1-30.

16.         Tache S, Benkaddour M, Corpet DE. Rotavirus inhibitor and recovery in raw bovine milk. Journal of Food Protection. 1995 Apr 1;58(4):434-8.

17.         Taha SH, Mehrez MA, Sitohy MZ, Abou Dawood AG, Abd-El Hamid MM, Kilany WH. Effectiveness of esterified whey proteins fractions against Egyptian Lethal Avian Influenza A (H5N1). Virology Journal. 2010 Dec;7:1-4.

18.         Wan T, Wang Y, He K, Zhu S. Microbial sensing in the intestine. Protein & Cell. 2023 Nov 1;14(11):824-60.

19.         Wang X, Yue L, Dang L, Yang J, Chen Z, Wang X, Shu J, Li Z. Role of sialylated glycans on bovine lactoferrin against influenza virus. Glycoconjugate Journal. 2021 Dec 1:1-8.

RAWMI Annual Report for 2023-24

The Raw Milk Institute (RAWMI) is on a mission to improve the safety and quality of raw milk and raw milk products through farmer training, rigorous raw milk standards, raw milk research, and improving consumer education.

In 2023, RAWMI was awarded a 5th grant for $45k from the Regenerative Agriculture Foundation (RAF) to further our work. RAWMI matches an economic benefit of stewardship of pastures and soils to high value raw dairy products for consumers. Safe raw milk from pastured cows can sustain the farm financially while the grazing improves the soils.

With the 5th grant from RAF, RAWMI was able to accomplish much towards the overall goal of universal access to safe raw milk. Over the last year, RAWMI accomplished the following.

Farmer Training and Mentoring

  • Trained over 150 farmers, legislators, university professors, and consumers on raw milk benefits and risk management

  • Prepared and presented an intensive full day World Class, Low-Risk Raw Milk training course for farmers in conjunction with Northeast Texas Community College in Mount Pleasant, Texas

  • Prepared and presented a 1.5-hour Thriving with Raw Milk webinar for farmers in conjunction with Iowa State University in support of Iowa’s recent legalization of raw milk

  • Prepared and presented a 2-day intensive Raw Milk Risk Management training course in Oregon in conjunction with Cast Iron Farm and Godspeed Hollow

  • Prepared and presented a 1-hour talk about The Quest for Raw Milk from Grass to Glass in conjunction with Dairy Day at Holcombe-Jimison Farmstead Museum in New Jersey

  • Prepared and presented a 1-hour talk about The Return of a Nourishing Tradition at Ringoes Grange in New Jersey

  • Prepared and presented a 1-hour Got Raw Milk? discussion at University of North Carolina School of Law in conjunction with the Conservation and Agricultural Law Foundation

  • LISTED eleven new farms who each went through the process of developing an individualized Risk Assessment and Management Plan (RAMP) for managing the health and hygiene of their unique farms

    • Fiat Farm in Bethel, Minnesota

    • Hillside Springs Homestead in Poultney, Vermont

    • ACM Grace Hill in Washington, Iowa

    • Flowered Cow Dairy in Penfield, Illinois

    • LanaRosa Dairy in Leicester, New York

    • Shady Paddock Farm in Paige, Texas

    • The Lucky Star in Iowa City, Iowa

    • Whispering Willows Farm and Dairy in Thompson’s Station, Tennessee

    • Lomah Texas in Dallas-Fort Worth area

    • Anonymous Goat Dairy in British Columbia, Canada

    • Chapman Family Farms & Dairy in Morrill, Nebraska

  • Served as the raw milk hotline for farmers in need across the USA and Canada

  • Provided one-on-one mentoring in the production of low-risk raw milk to over 50 additional farms in California, Colorado, Kansas, Kentucky, Idaho, Illinois, Indiana, Iowa, Michigan, Missouri, Montana, Nebraska, North Carolina, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, South Dakota, Tennessee, Texas, Vermont, Virginia, Wisconsin, British Columbia Canada, New Brunswick Canada, Quebec Canada, and Portugal

  • Hosted quarterly meetings for LISTED farmers, which allow the farmers to stay up-to-date on the latest lessons learned for safe raw milk

 Raw Milk Research

  • Amassed hundreds of raw milk test data from RAWMI LISTED farms 

  • Attended the International Milk Genomics Consortium Conference

  • Worked with researchers from Spectacular Labs and Kraken Labs who are developing on-farm technology for pathogen testing 

Education for Raw Milk Legalization

  • Developed raw milk legalization policy brief as a resource for legislators, policy makers, and legalization advocates

  • Worked towards increased legal access to raw milk in Wisconsin, Delaware, Louisiana, Minnesota, South Africa, and Canada (with Canadian Artisan Dairy Alliance)

  • Successfully advocated for legalization of raw milk in Iowa and Albuquerque, New Mexico

 Raw Milk Educational Materials

  • Published 9 content pieces on the RAWMI website

    • Managing Pathogen Risks from Fresh Cows and Does

    • Iowa: The Path to Legalization of Raw Milk

    • Managing the Increased Risks of Calf-Sharing on Raw Milk Farms

    • Texas Raw Milk Training: for World-Class, Low-Risk Raw Milk

    • New Raw Milk Research from the 2023 IMGC Symposium

    • Albuquerque New Mexico: Another Victory for Raw Milk Legalization

    • New Raw Milk Research: Suppression of Pathogens in Properly Refrigerated Raw Milk

    • FDA Demonstrates Bias Against Raw Milk in Unfounded Raw Cheese Recall

    • Avian Flu and Raw Milk – A Common Sense Approach

  • Published Farmers Can Thrive in the Emerging Raw Milk Market in The Natural Farmer Newspaper

  • Continued work on an extensive book about raw milk risk management

  • Wrote a 40+ page introductory training booklet for farmers titled Essential Principles for Low-Risk Raw Milk

 Supporting Testing for Low-Risk Raw Milk

  • Provided on-farm lab sponsorships to 11 farms

    • Flat Creek Acres in Montana

    • 57 Farm Store in Wisconsin

    • Flowered Cow Dairy in Illinois

    • Shady Paddock Farm in Texas

    • Lomah Texas in in Texas

    • Lucky Star Farm in Iowa

    • ACM Grace Hill in Iowa

    • Chapman Family Farms in Nebraska

    • Towering Oaks Farm in North Carolina

    • Anonymous farm in British Columbia Canada

    • Raising Arrows in Nebraska 

Avian Flu and Raw Milk: A Common Sense Approach

Breaking News!  There is a concern among dairymen and biosecurity experts about a multistate outbreak of avian flu that is affecting cattle in Texas, Kansas, Michigan, New Mexico, and Idaho. Various Federal and state government agencies are using this cow illness outbreak as a stage to warn consumers against drinking raw milk. 

According to the US Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS), in cattle this illness causes decreased lactation and low appetite, but the cattle generally recover without dying. Cows who have contracted this illness have recovered “with little to no associated mortality,” according to the USDA.

The press and media information released by the USDA and others warns against drinking raw milk from affected cows. They further state that pasteurization protects consumers from the illness.  


Raw Milk and Breastmilk are Very Similar

As a premed-trained dairy farmer who is a 12-year member of the UC Davis International Milk Genomics Consortium (IMGC), I have studied viral infections in cows and the immunologic and biomechanics of antibody creation.  Based on what is known about antibodies and raw milk, there are deep flaws in the warnings about consuming raw milk related to avian flu.  

Dr David Dallas PhD is an IMGC researcher who studies milk genomics. At the 2023 IMGC Symposium, Dr Dallas reported that raw milk from cows and goats is “qualitatively similar” to human breast milk.  However, “quantitatively” bovine raw milk and human breast milk have “different levels” of various milk components.  

This is why raw milk from cows and goats is so well-digested and compatible by human consumers. We can thus compare human mammals with bovine mammals in how mothers protect their babies. 

 

Mammals Protect Their Young Through Antibodies in Raw Milk

In 2004, the state of California Veterinarian visited our dairy to perform tuberculosis testing of our cows. He told me something I will never forget: “Mammals protect their young.”  

What he meant was that, in general, when a mother becomes infected by a virus or bacterial infection, she will produce antibodies in her raw milk that will provide her young with protection from the illness.  This is part of why breastfed babies are known to have stronger immune systems than babies raised on formula.  Antibodies in raw milk are one way that Nature assures the strength and survival of the next generation.  

The CDC readily acknowledges that mothers should continue to breastfeed their infants because “flu is not spread to infants through breast milk.” They know that breastmilk contains “antibodies and other immunological factors that can help protect her infant from flu.” Similarly, studies performed at the UC Davis dairy lab during COVID found that exposing a cow to coronavirus resulted in antibodies to coronavirus in her raw milk.  

These studies were a further confirmation of what doctors and the owners of Alta Dena dairy knew way back in the 1960’s: cows that have been exposed to illnesses create antibodies to the illnesses which are then passed through their raw milk.  Decades ago, Alta Dena dairy would purposely make immune milk for certain consumers and doctors by intentionally exposing cows to specific illnesses. This raw milk was used to help heal sick people.  Now the FDA does not allow this practice and threatens anyone who uses it with criminal charges. They consider it to be equivalent to creating a new drug without oversight, which is a crime in the USA under the Food Drug and Cosmetic Act.  

Further back in history, it was observed that the milk maidens of the 1700-1800s did not catch smallpox because of their exposure to cowpox by being around dairy animals and drinking raw milk.

 

Common Sense Approach to Avian Flu in Cattle

The warnings against raw milk related to avian flu are clearly fearmongering.  The FDA acknowledges that “there is limited information available about the transmission of bird flu in raw, unpasteurized milk.” Then they go on to use the same fearmongering tactics they’ve been using for decades against raw milk, despite the fact that there is now ample evidence that raw milk can be carefully produced as a low-risk food.  

Conscientious raw milk producers already monitor their herds for illness and ensure that raw milk from unhealthy animals is not used for direct human consumption. Additionally, biosecurity measures such as maintaining a closed herd and quarantining any new animals are implemented.   

These are common sense measures that are already recommended by the Raw Milk Institute and used by diligent raw milk farmers. We have no reason to suspect that any further measures are necessary in the current Avian flu outbreak in cattle.  Mammalian milk is uniquely designed to protect and strengthen the immune system, and those systems will continue on as new threats arise.

Allergies and Raw Milk

Raw milk and allergies.png
 

Modern Lifestyles and Allergies

Although allergies were rare prior to the 1800’s [1], they are a common affliction in our modern lifestyles.  As people have moved further from their agricultural roots, allergies have become more prevalent.  Several studies have found that exposure to diverse bacteria and potential allergens in the environment makes a big difference in preventing the development of allergies.

For instance, in a study looking at allergies and asthma in northern Europe, allergy prevalence was much higher in Finnish people as compared to Russians, even though they lived in geoclimatically similar areas [2]. 27% of Finnish school children demonstrated allergic sensitization to pollen, as compared to only 2% of their Russian counterparts. In unraveling the causes for this disparity, the study found a striking result: “the epidemic of allergy and asthma results from reduced exposure to natural environments with rich microbiota, changed diet and sedentary lifestyle.” Basically, exposure to environments with high bacterial and microbial diversity is associated with lower rates of asthma and allergies.   

North Karelia in Finland and Pitkäranta region in the Republic of Karelia in Russia. The dashed lines are Finnish borders before 1944. Haahtela, et al, 2015.

North Karelia in Finland and Pitkäranta region in the Republic of Karelia in Russia. The dashed lines are Finnish borders before 1944. Haahtela, et al, 2015.

Several other studies have found similar results, and have concluded that living in a farm environment provides protection from asthma and allergies. Contact with farm animals was found to be associated with lower rates of allergies [3], as was “exposure to stables and farm milk” [4]. Although several studies identified that consumption of raw milk (aka “farm milk”) was an integral part of the farm environment, it was argued that allergy protection was from the farm environment and not from raw milk consumption.  However, further research has revealed that raw milk is indeed a key factor in protecting against allergies and asthma.

 

Children Who Drink Raw Milk Have Less Allergies

Several large epidemiological studies of European children have found correlations between raw milk consumption and decreased rates of allergies.

PARSIFAL Study

The PARSIFAL study was designed to look at allergy risk factors in children. This large study of over 14,800 European children (from Austria, Germany, the Netherlands, Sweden, and Switzerland) investigated allergic diseases in relation to children’s exposure to different environments (farms, rural, suburban) and farm-fresh foods (such as raw dairy products, eggs, and vegetables). The PARSIFAL data relating to allergies and raw milk were published in December 2006 in the Journal of Clinical and Experimental Allergy [5].

The PARSIFAL study concluded that there is a “significant inverse association between farm [raw] milk consumption and childhood asthma, rhinoconjunctivitis, sensitization to pollen, a mix of food allergens, and horse dander." The study found that, regardless of which environment the children lived in, those children who drank raw milk had significantly lower rates of allergies and asthma than children who did not drink raw milk. These effects were “most pronounced in children drinking farm milk since their first year of life.”

GABRIELA Study

The GABRIELA study was designed to investigate the genetic and environmental causes of asthma and allergies.  This study included over 8,000 European children (from Germany, Austria, and Switzerland), and was published in the Journal of Allergy and Clinical Immunology in August 2011 [6]. In this study, raw milk consumption was compared to consumption of boiled/pasteurized milk, and the level of exposure to raw milk in utero through school age was also accounted for. The study also looked into the children’s exposure to farm environments as a possible variable related to rates of asthma and allergies.

The GABRIELA study found that raw milk consumption is associated with significantly lower rates of allergies and asthma, and that this beneficial effect is independent of other farm exposures. It was found that early exposure to raw milk (at <1 year of age) and daily consumption of raw milk increased the beneficial effect in children who drank a mixture of raw milk and pasteurized milk. The consumption of only pasteurized milk “was not associated with any health outcome.”

unsplash-image--Ux5mdMJNEA.jpg

 

It’s Not the “Farm Effect,” It’s the Raw Milk!

The above-referenced studies specifically analyzed the effects of living environments, and found that the beneficial effects of raw milk on allergies and asthma were indeed present even in children who did not live on farms. Furthermore, a recent meta-analysis of eight health studies related to raw milk was published in the November 2019 issue of the Journal of Allergy and Clinical Immunology [7]. A meta-analysis is a quantitative statistical analysis which combines the results of multiple scientific studies, thereby allowing the researchers to derive overall conclusions about that body of research.

The recent meta-analysis, written by a team of researchers from the Netherlands and Germany, concluded that when taken as a whole, the body of data from the previous studies shows that raw milk consumption in childhood has a protective effect on allergies and asthma “independent of other farm exposures and that children not living on a farm can theoretically profit from this effect.” 

unsplash-image-v5GI9rol_WY.jpg

 

Why Does Raw Milk Protect Against Allergies and Asthma?

Although it was originally postulated that raw milk’s bacterial content was responsible for its allergy-protective effects, research has not found this to be the case.  For instance, the GABRIELA study found that, “Contrary to our expectations, we did not observe an association between total viable bacterial counts in milk and investigated health outcomes” [6].

More recent research has investigated whether the whey proteins in raw milk could be responsible for the beneficial effect on allergies. A study published in the June 2020 Food and Function Journal “aimed at achieving a better understanding of the underlying mechanism between heat damage to whey proteins and allergy development” [8]. In this study, “raw cow’s milk was heated for 30 min at 50, 60, 65, 70, 75, or 80 °C [122, 140, 149, 158, 167, or 176 °F]… The allergy-protective effect of differently heated milk samples were tested in a murine OVA-induced food allergy model.” 

Heat treatment at 65 °C or higher destroyed allergy-protective capacity of raw milk in murine OVA-induced food allergy model. Xiong, et al, 2020.

Heat treatment at 65 °C or higher destroyed allergy-protective capacity of raw milk in murine OVA-induced food allergy model. Abbring, Xiong, et al, 2020.

This study found that allergy protection ceases when raw milk is heated to 149 °F, which is the same temperature at which the whey proteins are denatured.  It was concluded that the whey protein in raw milk provides protection from allergies, asthma, and inflammation.  When heated above 149 °F, these properties are dramatically reduced or eliminated. This finding is an important confirmation of the unique beneficial properties of whole, unprocessed raw milk. 

Low-Risk Raw Milk as a Therapeutic Tool Against Allergies

The research is clear that raw milk consumption is correlated with protection from allergies and asthma. Although a living environment that is rich in bacterial diversity is helpful, it has been demonstrated that the allergy-protective benefits of raw milk are present in both rural and urban environments.  The immunologically active whey proteins are likely the cause of this protective effect.  There is a growing body of evidence that raw milk is a low-risk food when it is produced carefully and intentionally [9, 10]. Thus, low-risk raw milk can be a powerful therapeutic tool for allergy and asthma protection.

unsplash-image-eRAq9asBIy4.jpg

 

References

[1] Hay Fever and Paroxysmal Sneezing: Their Etiology and Treatment. 1887. Mackenzie M. https://archive.org/details/b20406757/page/n7/mode/2up

[2] Hunt for the origin of allergy – comparing the Finnish and Russian Karelia. Clinical and Experimental Allergy. 2015; (45) 891– 901. Haahtela T, Laatikainen T, Alenius H, Auvinen P, Fyhrquist N, Hanski I, von Hertzen L, Jousilahti P, Kosunen T U, Markelova O, Mäkelä M J, Pantelejev V, Uhanov M, Zilber E, Vartiainen E. https://onlinelibrary.wiley.com/doi/full/10.1111/cea.12527

[3] Farming exposure in childhood, exposure to markers of infections and the development of atopy in rural subjects. Clinical and Experimental Allergy : Journal of the British Society for Allergy and Clinical Immunology vol. 34,8 (2004): 1178-83. Radon K, Windstetter D, Eckart J, Dressel H, Leitritz L, Reichert J, Schmid M, Praml G, Schosser M, von Mutius E, Nowak D. https://pubmed.ncbi.nlm.nih.gov/15298556/

[4] Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet. 2001;358(9288):1129-1133. Riedler J, Braun-Fahrländer C, Eder W, Schreuer M, Waser M, Maisch S, Carr D, Schierl R, Nowak D, von Mutius E; ALEX Study Team. https://pubmed.ncbi.nlm.nih.gov/11597666/

[5] Inverse association of farm milk consumption with asthma and allergy in rural and suburban populations across Europe. Clinical and Experimental Allergy. 2007; 37(5):661-70. Waser M, Michels KB, Bieli C, Flöistrup H, Pershagen G, von Mutius E, Ege M, Riedler J, Schram-Bijkerk D, Brunekreef B, van Hage M, Lauener R, Braun-Fahrländer C; PARSIFAL study team. https://www.ncbi.nlm.nih.gov/pubmed/17456213

[6] The protective effect of farm milk consumption on childhood asthma and atopy: The GABRIELA study. Journal of Allergy and Clinical Immunology. 2011; 128 (4): 766-73. Loss G, Apprich S, Waser M, Kneifel W, Genuneit J, Büchele G, Weber J, Sozanska B, Danielewicz H, Horak E, Joost van Neerven RJ, Heederik D, Lorenzen PC, von Mutius E, Braun-Fahrländer C; GABRIELA study group. https://www.jacionline.org/article/S0091-6749(11)01234-6/fulltext

[7] The Beneficial Effect of Farm Milk Consumption on Asthma, Allergies, and Infections: From Meta-Analysis of Evidence to Clinical Trial. Journal of Allergy and Clinical Immunology: In Practcice, 2019. 8 (3): 878-889. Brick T, Hettinga K, Kirchner B, Pfaffl MW, Ege MJ. https://www.ncbi.nlm.nih.gov/pubmed/31770653

[8] Loss of allergy-protective capacity of raw cow's milk after heat treatment coincides with loss of immunologically active whey proteins. Food and Function. 2020 Jun 24;11(6):4982-4993. Abbring S, Xiong L, Diks MAP, Baars T, Garssen J, Hettinga K, van Esch BCAM. https://pubmed.ncbi.nlm.nih.gov/32515464/

[9] Recent Trends in Unpasteurized Fluid Milk Outbreaks, Legalization, and Consumption in the United States. PLOS Currents. 2018; 10. Whitehead J, Lake B. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6140832/#ref27

[10] Raw milk producers with high levels of hygiene and safety. Epidemiology and Infection, 2020; 148, e14, 1-7. Berge AC, Baars T. https://www.ncbi.nlm.nih.gov/pubmed/32000877 

Raw Milk and Lactose Intolerance

People choose to drink raw milk for many different reasons. Some are seeking to support local farms and connect with the places from which their food originates.  Others want to make sure that animal welfare is a high priority in the production of their food. Some people choose raw milk for its delicious, rich flavor.  And still others seek out raw milk in order to address specific health conditions, such as asthma, allergies, and eczema.

Lactose intolerance and maldigestion of pasteurized milk are significant factors for many people who choose raw milk. Nonetheless, when researching the peer-reviewed literature, many would conclude that raw milk cannot help with lactose intolerance. Raw milk detractors often cite a study by Stanford University in their assertion that raw milk does not help with lactose intolerance. However, many people who have been diagnosed as “lactose intolerant” have reported that they can actually drink raw milk with no digestive problems. Let’s dig deep into all of this to better understand the disconnect.

The Stanford Study

The Stanford study, titled “Effect of Raw Milk on Lactose Intolerance: A Randomized Controlled Pilot Study,” assessed the effects of raw milk, pasteurized milk, and soy milk in 16 adults. The people participating in this study were confirmed to have “true lactose malabsorption” through the use of a Hydrogen Breath Test (HBT). Over a course of several weeks, the participants in the study consumed successively greater amounts of raw milk, pasteurized milk, and soy milk in an 8-day milk phase for each type of milk as shown in the figure below.  This study found that there was no improvement in lactose intolerance symptoms with the consumption of raw milk compared to pasteurized milk.

Milk dosage protocol and outcome measures for each 8-day milk phase: full amount of milk was consumed in 1 sitting on each day. Mummah, et al 2014.

Milk dosage protocol and outcome measures for each 8-day milk phase: full amount of milk was consumed in 1 sitting on each day. Mummah, et al 2014.

Although the Stanford study has often been cited as proving that raw milk does not help with lactose intolerance, there are some significant problems with this study. The sample size of 16 participants is quite small, and this makes is very difficult to make any sweeping conclusions based on the results of the study.  The sample size becomes even more problematic when it is considered that 383 people initially signed up to participate in the study.

The 383 people who volunteered for this study considered themselves to be lactose intolerant. This means that they had experienced digestive symptoms such as diarrhea, abdominal cramping, audible bowel sounds, and/or flatulence as a result of consuming milk products. However, only 27 people were qualified to participate through the use of the Hydrogen Breath Test. Of these 27 people, 16 people chose to participate in the study. Out of the initial group of 383 volunteer participants, only 4% actually participated in the study. This means that 96% of the original volunteers were excluded from this study!

This calls into question the use of the Hydrogen Breath Test as an appropriate measure of lactose intolerance.  Although the HBT is used to characterize the clinical definition of lactose malabsorption, it is clearly not a sufficient test for identifying people who experience digestive symptoms as a result of consuming milk products. The study even mentioned that, “Many people with lactose malabsorption [as diagnosed through results of the HBT] do not report clinical lactose intolerance. Conversely, many individuals with perceived lactose intolerance do not experience malabsorption [as confirmed with HBT].” The Hydrogen Breath Test is clearly not a sufficient test for identifying people who experience digestive symptoms from the consumption of milk products.

Another significant problem with the Stanford study is that the length of the 8-day milk phases may have been too short.  Specifically, the study authors found that “the reduced H2 production observed for raw milk on day 8 vs day 1 suggests a degree of adaptation to raw milk… In contrast to raw milk, no adaptation was observed for pasteurized milk.” The participants had decreased levels of hydrogen in the HBT by the end of the 8-day raw milk phase, and this finding warrants further study to determine whether this trend would have continued over a longer period of time and resulted in a reduction of lactose intolerance symptoms.

Overall, the Stanford study fell far short of actually answering the question of whether raw milk can be well-tolerated by people who describe themselves as “lactose-intolerant.” 96% of the volunteers who considered themselves to be lactose intolerant were excluded from this study. Furthermore, the study did not continue long enough to determine if the positive trend in hydrogen production from drinking raw milk would have continued and resulted in reduction of lactose intolerance symptoms.

First-Hand Accounts About Raw Milk and Lactose Intolerance

There have been numerous first-hand reports of improvements in lactose intolerance from the consumption of raw milk. For instance, lactose intolerance runs in my husband's family, coming through his father.  My husband and his siblings all developed digestive problems from consuming milk and other dairy products at around 18-20 years old. Prior to trying raw milk, my husband could only tolerate pasteurized milk products if he took lactase enzyme pills whenever he consumed dairy. However, my husband has been able to drink raw milk in moderate amounts (such as 1-2 glasses per day) with no problems, and raw milk consumption also corresponded with an increased ability to tolerate pasteurized dairy in cheese and ice cream.  My father-in-law was also able to consume raw milk without digestive problems and reported that it also increased his ability to consume pasteurized cheese and ice cream.  

Here are a few more first-hand accounts about raw milk consumption and lactose intolerance.

I am lactose intolerant. I was diagnosed around the age of 12. I missed so much school due to upset stomach & went off of dairy fully for over 10 years. I can drink raw milk with no issues - I can have cups of it with no bad side effects. In fact - I can even have pasteurized dairy now with little to no problems. It has helped my gut health so much - I notice when I don’t consume it because my digestion gets weird.

“When I first started drinking it I was terrified but after the first cup my body craved it for the first month. It was all I wanted. I could have easily drank half a gallon a day if I didn’t limit myself. That’s tapered off now though.”       ~Bethanie N.

I had IBS and had to take everything out of my diet and slowly add things back in to see what was bothering me. It was processed dairy. Found raw dairy and now that's all I consume most days. Raw milk, cheese, yogurt, butter. IBS gone, hemorrhoids gone, arthritis gone, inflammation gone, sinus problems gone. Feel like a new woman.” ~Patricia W.

My kids were all lactose intolerant, but when I switched to raw A2, they all saw a huge difference in response. No more issues. One of my kiddos was at the point of needing her tonsils removed, but they shrunk down to normal size, and her sleep apnea went away.” ~mother of four children

raw milk

Surveys About Raw Milk and Lactose Intolerance

There have been several raw milk surveys which collected data about lactose intolerance. In a 2007 survey of Michigan raw milk drinkers, 155 people participating in the survey had been diagnosed with lactose intolerance by a healthcare professional. Out of these 155 people, 118 reported that they did not have lactose intolerance symptoms from consuming raw milk.  Thus, 76% of the survey respondents who had been diagnosed with lactose intolerance were able to consume raw milk with no digestive issues.

In a 2011 survey of 56 Michigan raw milk drinkers, “eleven individuals claimed that they experienced symptoms of lactose intolerance when drinking processed milks but had no ill side effects from drinking raw milk.”

In a 2014 survey of 153 Maryland raw milk drinkers, “Fifty-nine respondents claimed no discomfort after drinking raw milk but discomfort from drinking pasteurized milk.

Raw Milk and Lactase

Pasteurization inactivates enzymes and also denatures proteins, and consequently pasteurized milk induces digestive discomfort in many people. Lactase is the enzyme responsible for breaking down lactose into digestible form. Raw milk facilitates the production of lactase enzyme in the intestinal tract, and thus it makes sense that so many people have reported improvements in lactose intolerance from drinking raw milk.

Ancient populations who relied on dairy products adapted over time by developing lactase persistence genes. These genes allow people to digest lactose into adulthood, and they have been found in various indigenous populations in Africa, Europe, Asia, and the Middle East. Overall, around 35% of adults worldwide have lactase persistence genes.

Although it has been widely argued that only people who have lactase persistence genes can consume milk, there are currently many populations around the globe who subsist largely on dairy yet who do not have lactase persistence genes.  For instance, despite the fact that an estimated 95% of Mongolians do not have the lactase persistence gene, their diet relies very heavily on raw milk, cheese, and other milk products.

Furthermore, archaeological evidence shows that humans were consuming raw milk for thousands of years before the widespread appearance of the lactase-persistence gene. Raw milk allowed humans to thrive in conditions where survival would have been difficult. Scientists now believe that lactase-persistence genes were spread through natural selection. This means that the reproductive capacity and/or survivability of ancient raw milk drinkers was substantially increased compared to non-milk-drinking populations.

Large Body of Evidence for Raw Milk and Lactose Intolerance Benefits

First-hand accounts and surveys show that there are many people whose lactose intolerance symptoms are improved by drinking raw milk. Additionally, many worldwide raw milk-drinking populations do not have lactase persistence genes. Furthermore, the archaeological record shows that humans were consuming raw milk for thousands of years before the appearance of lactase persistence genes. This large body of evidence cannot be negated by one small study. The Stanford study should clearly not be seen as the final word on raw milk and lactose intolerance.

Raw Milk Reduces Respiratory Infections and Fevers

respiratory infections and raw milk

A study of 983 European infants looked at consumption of raw milk, pasteurized milk, and ultra-high temperature pasteurized milk alongside occurrence of respiratory tract infections, rhinitis (runny nose), otitis (ear infections), and fever. This study was published in January 2015 in the Journal of Allergy and Clinical Immunology [1].

Every week from age 8 weeks to 53 weeks, the infants’ health outcomes and dairy consumption were tracked. “The main finding of this analysis was an inverse association between consumption of unprocessed [raw] cow's milk and rhinitis, RTI [respiratory tract infection], and otitis.” There was also an inverse association between raw milk and fevers.

In layman’s terms, an “inverse association” means that as one increases, the other decreases. This study thus found that, as raw milk consumption increased, the incidence of runny nose, respiratory tract infections, fevers, and ear infections decreased. The researchers concluded that, “The protective effects of raw cow's milk on infections were comparable to those of breast-feeding, suggesting similar anti-infective properties of bovine and human milk.”

raw milk respiratory infections.png

Additionally, C-reactive proteins were measured in the infants at 12 months old. C-reactive proteins are a measure of inflammation in the body. The study found that “raw farm milk consumption was inversely associated with C-reactive protein levels at 12 months.” The researchers concluded that consumption of raw milk led to a “sustained anti-inflammatory effect” in the body.

It is clear from this research that raw milk consumption is correlated with improved resistance to respiratory tract infections, ear infections, fevers, and overall inflammation.

References

[1] Consumption of unprocessed cow's milk protects infants from common respiratory infections. Journal of Allergy and Clinical Immunology. 2015; 135 (1): 56-62. Loss G, Depner M, Ulfman LH, Joost van Neerven RJ, Hose AJ, Genuneit J, Karvonen M, Hyvärinen A, Kaulek V, Roduit C, Weber J, Lauener R, Pfefferle PI, Pekkanen J, Vaarala O, Dalphin JC, Riedler J, Braun-Fahrländer C, von Mutius E, Ege MJ; PASTURE study group. https://www.jacionline.org/article/S0091-6749%2814%2901274-3/fulltext

NEW Raw Milk Research: Suppression of Pathogens in Properly Refrigerated Raw Milk

We are pleased to announce that a new peer-reviewed paper has been published about pathogen growth in raw milk.  The paper is "Suppression of pathogens in properly refrigerated raw milk" by primary authors Peg Coleman and Dr Tom Oscar. 

This paper documents the results of a pilot study aimed at gaining insights into how well pathogens can grow in refrigerated raw milk. This study was commissioned by the Raw Milk Institute, with pathogen growth tests being performed at Food Safety Net Services (FSNS), an independent 3rd party lab.

Inapplicable Data Has Been Used to Vilify Raw Milk

Some of the data cited by Government agencies against raw milk includes pathogen growth studies where it was found that pathogens multiply greatly over time.  However, these studies are not actually applicable to carefully-produced raw milk because they were performed in nutrient-rich broth instead of milk, they used tremendously high amounts of pathogens (such as 10 log 7, which corresponds to ten million pathogenic colony-forming units (CFU) of bacteria per mL), or they did not account for cold temperature storage.

Pathogens Were Purposely Added Into Raw Milk

In this new pilot study, samples of well-produced raw milk were purposely inoculated with the four main pathogens of concern for raw milk: E coli 0157:H7, Salmonella spp., Campylobacter spp., and Listeria monocytogenes. The raw milk was inoculated at two levels (high and moderate counts per mL).

Pathogen Growth Was Measured Over Time

The objective of this new pilot study was to document growth characteristics of these pathogens in carefully produced raw milk over a period of 14 days when stored at the refrigeration temperature recommended by FDA and USDA: 40°F (4.4 °C). The number of pathogenic bacteria present in the raw milk were counted on days 0, 3, 6, 9, 12, and 14.

Study Found No Growth of Three Types of Pathogens

The study authors concluded that:

"The major finding of the pilot study is statistical evidence of no growth at 4.4°C for the major foodborne pathogens causing illness associated with raw milk in the US (Campylobacter, E. coli O157:H7, and Salmonella). For listeriosis, rarely associated with illness from raw milk, the pilot study documented evidence of pathogen growth in 8 of 12 replicates (P = 0.001 to P = 0.028, significant by ANOVA in the second week of refrigerated storage)."

These results indicate that, when stored at the recommended refrigerator temperature, moderate to high counts of E coli 0157:H7, Salmonella spp., and Campylobacter spp. did not multiply over time in raw milk.

Listeria monocytogenes exhibited some growth in the second week of refrigeration. It is important to note that a recent systematic review found that the risks of severe listeriosis were greater for pasteurized milk than for raw milk.

Challenging Incorrect Assumptions of the Past

Although more data is needed, the results of this pilot study serve to provide an initial basis for challenging incorrect assumptions of the past that overestimated the growth of pathogens in clean, cold raw milk produced for direct human consumption by careful, trained producers.

Special thanks to Peg Coleman and Dr Tom Oscar for their work on this statistical analysis and paper.

You can read the full paper here: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0289249

New Raw Milk Research From the 2023 IMGC Symposium

A Farmer’s Takeaways from the 2023 Symposium of the International Milk Genomics Consortium (IMGC)

“If you are the smartest person in the room, you are in the wrong room.”

Introduction

Well…I was in the right room at IMGC with a huge opportunity to learn and grow. Just like all prior years.

The 20th International Milk Genomics Consortium (IMGC) Symposium was held on September 6-8 2023. This was the 12th year that I have attended the IMGC Symposium. For the last several years, the Raw Milk Institute has been an official Bronze Level Sponsor of the conference. These conferences have taken me all over the world, including Cork Ireland, Quebec Canada, Aarhus Demark (twice), Sydney Australia, and UC Davis in California several times. I am nearly always the only farmer in the room filled with dairy processing scientists, PhD students, dairy science professors and university professors, and other milk researchers.

Over 12 years, I have made some great friends and created some important collaborations and alliances. I am approached by PhDs, especially after I speak at the microphone after a particularly engaging presentation that begs questions. They say things like, “Keep on asking those great questions!”  I am the only one that can ask those questions because everyone else would potentially lose their NIH or industry grants if they dared to asked those kinds of questions.

Time and interest are ushering in a new generation of open-minded PhD researchers, many of whom are women. They all want to talk about raw milk and its bioactive elements. Raw milk is truly a miracle of nature.  Being an event sponsor has allowed greater access to insider information about all things milk.  Below are my main takeaways from three intensive days of meetings, interactions, meals and dinner parties, and presentations in Cork Ireland at the University of Cork.

Raw Milk Institute was a Bronze Level Sponsor of the 2023 IMGC Symposium

Raw Milk Nourishes, Protects, and Directs

Raw milk is incredibly complex and perfectly designed to nourish, protect, and direct. We all know that raw milk is designed as the first food of life for babies to thrive and grow, yet as researchers continue to study raw milk, they discover many more benefits.

For instance, raw milk serves as a delivery system for immune-bioactive proteins. Peptides (which are chains of amino acid proteins) are protective of the baby by not allowing pathogens to cause illness. These functional proteins serve many roles, including protection of the baby.

Other specialized-proteins in breastmilk include natural mRNA, which provide the genetic information to direct cellular metabolic processes in the baby.  Breastmilk also contains stem cells for repair of damaged cells or tissues.

Raw milk also contains everything needed for its digestion. Raw milk has proteases, peptidases (for digesting proteins), lipases (for digesting fats), and bacteria that make lactase (for digesting lactose).

Additionally, when people drink milk, over time there are changes in the composition of the gut bacteria that make milk digestion easier. Lactase-producing bacteria found in the gut become the probiotic and as they feed on lactose, that becomes their selected prebiotic (food that bacteria chose to digest or eat). Over time the populations of these lactose-loving probiotic bacteria increase when they are fed lactose from dairy products.

The various milk proteins, immunoglobins, enzymes, fats and sugars are “qualitatively similar” between human breastmilk and cow milk. However, they are “quantitatively different” and appear at different levels and amounts in cow milk versus human milk. The same would be true for other bovine milks. The similarities are why humans can drink raw milk from cows, goats, and other animals. 

Milk’s Benefits Can’t Be Extracted

Many raw milk researchers are focused on finding ways to extract beneficial elements from raw milk. However, these elements are designed to work together with the full complement of many different macro- and micro- nutrients, enzymes, probiotics, etc in whole raw milk.

New products made with bio-actives extracted from raw milk will likely be met with suspicion, as well they should. The health benefits from whole, raw milk are the result of a complex interplay of bio-actives. Outside of the whole food matrix, those bio-actives are incomplete and not as effective as in their natural state.

Milk Fat is Essential to Its Beneficial Properties

Butterfat in milk is an essential part of milk’s overall beneficial properties. This fat is known to benefit brain development, immune system development, intestinal development, and the composition of the gut microbiota.

Butter fat globules are three-layer thick capsules that come in different sizes. The three-layered capsules are used by the gut as fiber; they also provide butyrate and butyric acids which are highly beneficial and healing to the lower gut. 60% of the bioactive elements found in raw milk are “carried on or inside” the fat globule. This says so much about skim milk, which has lost much of its beneficial value with the removal of the fat.

Researchers discovered that the fat globules in the milk are smaller in cows fed a high energy diet with high stress levels, such as cows being kept in concentrated animal feeding operations (CAFOs). The smaller fat globules in the milk do not contain bacteria inside that could ride through the stomach to the lower gut.

In contrast, the fat globules are larger in cows fed a low energy diet and under low stress levels (such as cows in pasture-based operations).  These larger fat globules carry bacteria inside of them. It is thought that the fat cell may act as a protective carrier vessel to carry bacteria though the stomach acid environment into the lower gut where they may be beneficial.

Pasteurization Damages and Denatures Milk

Pasteurization damages milk such that it becomes oxidated, highly allergenic, and hard to digest. It is a common protocol to pasteurize milk up to 3 or 4 times to achieve longer shelf life and assure that the milk is completely dead, with no regard for the essential and beneficial bio-actives that are destroyed in the process. 

Raw milk contains everything it needs to digest itself. Raw milk contains enzymes and bacteria that help create more enzymes to digest raw milk and all the sub elements. Milk maldigestion has been over simplified. It is not just lactose; it is the proteins and fats that also need help with digestion.

After pasteurization the bioactive elements needed for milk to digest itself are missing! Fats, proteins, and sugars all need digesting, but their enzymes and digestive bacteria are denatured or dead.  Without active enzymes, digestion of fat (via lipase) and proteins (via protease) is inhibited. This results in maldigestion in some consumers. 

Whereas raw milk helps to build immune system strength, pasteurized milk does not build up the immune system. Heat denatures the functional proteins and does not allow cellular direction. This can result in cellular confusion and chaos.

Raw whey proteins are highly anti-inflammatory and have many health benefits. The raw whey health benefit findings are consistent with other researchers in the Netherlands, including Dr. Ton Baars’ research on whey proteins showing that they stabilize MAST cells, control histamine release, and reduce allergies.

However, all whey is required to be pasteurized in the USA as per the Food and Drug Administration (FDA) and Pasteurized Milk Ordinance. Whey proteins are destroyed by processing and are highly sensitive to heat. One researcher has been frustrated in trying to extract the beneficial components from pasteurized whey. The heating of whey makes the components “sticky” such that they plug up the ultrafiltration micropores. Therefore, ultra filtration cannot be used to extract whey components from pasteurized whey.

New Pasteurization Technologies Cause Less Damage Than Traditional Heat Pasteurization

As an alternative to heat-based pasteurization, researchers are studying other methods such as high pressure (HPP), ultrafiltration, and ultraviolet (UV) light. These methods are effective at inactivating bacteria and less harmful to milk than heat-based pasteurization. For instance, both high pressure processing and ultraviolet processing preserve some of the bioactive milk proteins better than heat-based pasteurization.

Nonetheless, milk processors in the USA are resisting the use of these new technologies. In some other countries, UV and HPP are being successfully used, but in the USA the FDA continues to represent processors’ interests and thereby block the ability to innovate with these alternatives to heat processing. This failure to innovate with HPP, UV or Ultrafiltration is creating a loss of consumer interest in pasteurized milk as people continue to suffer from maldigestion when consuming pasteurized milk.

In Studies, 20,000+ Kids Drank Raw Milk With NO Milk-Related Illnesses

The pioneering PARSIFAL and GABRIELA studies of more than 55,000 kids in Europe really set the international high bar for studies on raw milk. The overall findings included reduced rates of asthma, eczema, respiratory illnesses, fevers, allergies, and ear infections in children who drank raw milk.

At the symposium, it was emphasized that during all of those studies and over twenty years of research, there was never a “red flag event.” A red flag event would be a reported illness from raw milk consumption. The studies included data from more than 20,000 children who drank raw milk, and there was not a single red flag event!

Yet, at the end of each of the peer reviewed and journal published articles, there is a disclaimer that says something such as, “even though there are health benefits to consuming raw milk, the researchers can not recommend raw milk because of the risks of raw milk consumption.” This disclaimer was included because peer review and journal publication political pressures demanded it, despite the fact that there was no basis in the research data.

Dr. Markus Ege MD and Mark McAfee, in Cork Ireland at the IMGC symposium 2023

Raw Milk Provides Sustainability for Farmers and Superb Nutrition for Consumers

Farmers have been denied fair markets for their dairy products for more than a century. All of the value-added efforts are happening after products leave the farm. Milk processors continue to ensure that farmers are paid low prices for their milk, resulting in the loss of thousands of family farms. However, raw milk provides a pathway to sustainability and life satisfaction for dairy farmers.

Raw milk presents a unique farmstead product that brings all the added value back to the farmer with an incentive to work on quality. By selling directly to consumers, raw milk farmers are able to obtain greater financial rewards for their work, while consumers benefit from the improved flavor and nutrition. It’s a win-win for farmers and consumers!

Raw milk that is carefully and intentionally produced for direct human consumption is a low-risk food. This type of raw milk is wholly different from raw milk being produced in unhygienic conditions. Raw milk intended for direct human consumption is produced in sanitary conditions, with much care to ensure that the animals are healthy and that the milk is clean. This type of raw milk is tested often and held to rigorous standards to ensure that it is being produced in a way that discourages pathogen growth.

By combining nature’s blueprints, the bio-actives found in whole raw milk, standards for good production practices and modern testing systems, RAWMI Listed farmers are nourishing consumers safely. Congrats to all of the RAWMI Listed pioneers! 

Texas Raw Milk Training: For World-Class, Low-Risk Raw Milk!

Raw Milk Institute (RAWMI) recently taught a full-day intensive farmer training class on Production of Low-Risk, World-Class Raw Milk in Mount Pleasant Texas. RAWMI President Mark McAfee and Vice President Sarah Smith traveled to Texas to teach this class in collaboration with Northeast Texas Community College (NTCC).

There were 25+ attendees from Texas, Louisiana, and Arkansas. Attendees included farmers who are already producing raw milk, prospective farmers considering raw milk production, and students who were interested to know more about raw milk.

RAWMI presented our full 5-hour training presentation in the NTCC Ag Complex classroom, complete with catered snacks and lunch from local businesses.

A Texas state dairy inspector also presented and answered questions about Texas raw milk laws. She provided invaluable information about Texas’ Raw for Retail statute as well as the allowance for herdshares in Texas.

Following our classroom presentation, we took the students for a farm tour at Udder Delight Dairy, which is a raw milk micro-dairy that is operated by Tom and Brenda Ramler. Their dairy is currently working through our free one-on-one mentoring process to become a RAWMI Listed dairy.

Overall, this class was a resounding success! The students were engaged and appreciative of the opportunity to learn more. Several farmers who attended the class have expressed interest in becoming RAWMI Listed as well.

RAWMI extends special thanks to Tom Ramler, Jimmy Smith, and Northeast Texas Community College for sponsoring and coordinating this important step for safe, low-risk raw milk in Texas!

Managing the Increased Risks of Calf-Sharing on Raw Milk Farms

Calf-sharing, i.e. allowing a cow’s offspring to nurse directly from its mother, is a common practice on small dairy farms.  Many farmers and consumers think that calf-sharing is ideal for the health and well-being of both the cow and calf, and it does present an idyllic picture of farm life. Calf-sharing can also reduce the workload for farmers, who don’t have to bottle-feed the calves.   

However, farmers who are producing raw milk need to be aware that calf sharing increases the risk of pathogens being present in the raw milk. The same is true for kid-sharing with goats.

Pathogens, Calves, and Kids

You may wonder: Why do calf-sharing and kid-sharing increase the risk of pathogens in raw milk?  Just like human babies, calves and kids explore the world with their mouths and can then directly transfer harmful bacteria to the udders as well as to the inside of the teat canals. Calves and kids have immature immune systems and are therefore more likely to harbor pathogens themselves.

Although pathogens in well-produced raw milk are rare, they are still an important consideration and we encourage all raw milk farmers to take pathogens seriously.  Pathogenic bacteria that can be carried by calves and kids include E coli 0157:H7, Salmonella spp., Campylobacter spp., and Listeria monocytogenes. Illnesses from these pathogens can be serious or even fatal. 

Many scientific studies have verified that calves and kids are more likely to carry pathogens than their fully-grown counterparts. Below are a couple of the studies; additional studies are listed in the references section at the end of this article.

  • A longitudinal study of Shiga-toxigenic Escherichia coli (STEC) prevalence in three Australian dairy herds -

    https://www.sciencedirect.com/science/article/pii/S037811359900173X?via%3Dihub -

    "In concurrence with previous studies, it appears that cattle, and in particular 1–14-week-old weanling calves, are the primary reservoir for STEC and EHEC on the dairy farm."

  • Age related differences in phylogenetic diversity, prevalence of Shiga toxins, Intimin, Hemolysin genes and select serogroups of Escherichia. coli from pastured meat goats detected in a longitudinal cohort study - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7391229/ - "Overall, virulence genes and STEC [virulent e coli] were detected in isolates from goat kids in higher proportions than adult animals. Additionally, isolates with 2 or more virulence genes were significantly higher in pre-weaned and goat kids around weaning than in adult goats."

Illness outbreaks from petting zoos provide further confirmation that calves and kids can transfer pathogens in real-world conditions.

  • Animal petting zoos as sources of Shiga toxin-producing Escherichia coli, Salmonella and extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae -   https://pubmed.ncbi.nlm.nih.gov/33382208/ - “Animal petting zoos and farm fairs provide the opportunity for children and adults to interact with animals, but contact with animals carries a risk of exposure to zoonotic pathogens and antimicrobial-resistant bacteria... Of 163 faecal samples, 75 contained stx1, stx2 or stx1/stx2 genes, indicating the presence of STEC. Samples included faeces from sika deer (100%), sheep (92%), goats (88%), mouflons (80%), camels (62%), llamas (50%), yaks (50%), pigs (29%) and donkeys (6%)…”

This information makes some farmers and consumers uncomfortable, yet it is still important to consider in developing a plan for minimizing the risk of pathogens from raw milk.   

Staph aureus, Calves, and Kids

In addition to pathogens that can cause human illness, calf-sharing (and kid-sharing) can increase the chance that Staph aureus will be widespread in the dairy herd.  Staph aureus is a type of bacteria that colonizes inside the mammary tissue, thereby increasing the risk of recurrent mastitis. The presence of Staph aureus can also cause scar tissue in the udder, which may result in lower milk production over time.  Cows and dams can transfer Staph aureus to suckling calves and kids, such that Staph aureus can become widespread in the dairy herd.  

Bottle-Feeding Has the Lowest Risk for Pathogens

At the Raw Milk Institute, our goal is to help farmers better-understand the potential risks in raw milk production so that they can then take steps to minimize the risks.  We are not the raw milk police, and we do not forbid anyone from calf-sharing. However, we want to make sure that farmers are aware of the risks and can then plan for how to reduce the risks.  

To achieve the lowest risk-profile, calves and kids would be bottle-fed.  It is nonetheless very important to ensure that the calves and kids receive the colostrum in order to help build up their immune systems. Be aware that the manure from calves and kids can also be a source of pathogens.  

Studies and farmer experience have shown that early separation (within 24 hours of birth) reduces the stress of the separation on both calves and cows. Leaving the cow and calf together for longer periods increases the stress related to separation.

  • Effects of early separation on the dairy cow and calf: 2. Separation at 1 day and 2 weeks after birth - https://pubmed.ncbi.nlm.nih.gov/11179551/ - “Behavioural observations were conducted on 24 Holstein dairy cow-calf pairs during the first 24h after separation. Before separation, cow-calf pairs were generally inactive. After separation, cows from the late-separation treatment group showed higher rates of calling, movement and placing the head outside the pen, than cows in the early-separation group.”

Calves who have been separated from their mothers will do best if they are kept with at least one other calf rather than in isolation. 

  • The effect of individual versus pair housing of dairy heifer calves during the preweaning period on measures of health, performance, and behavior up to 16 weeks of age - https://pubmed.ncbi.nlm.nih.gov/33358809/ - Pair housing of dairy heifer calves during the preweaning period helps meet the natural social needs of the calf and has been shown to improve growth and starter intake during the preweaning period as compared with individual housing.

Raising calves can be time-intensive, so some farms choose to instead have their calves raised offsite at farms that specialize in calf-rearing.  

Managing the Risks of Calf-Sharing

For farms that choose to calf-share or kid-share, below are some risk management strategies that have been employed successfully in small dairy farms that have participated in the Raw Milk Institute’s Listing program.  

  • Apply extra diligence to udder preparation and stripping.  Ensuring that the teats are well-cleaned, pre-dipped, and stripped prior to milking will reduce the chance of pathogens being present. (See our Udder Prep for Raw Milk article for more information.)

  • Closely monitor the calves/kids for any signs of illness.  If the calves/kids are ever showing signs of illness (such as diarrhea, runny nose, etc.), the milk would potentially have a greater risk of pathogens.  The milk should then be either diverted and not used for direct human consumption or the calves/kids should be separated from the herd until the illness has cleared.

  • Perform regular milk culture testing of your herd for Staph aureus to make sure it is not present. Staph aureus can show up intermittently so one test does not necessarily clear the herd.

  • Have a "nurse cow" or “nurse dam” to feed the calves or kids, whose milk is not used for human consumption.  This method needs to be utilized carefully, as too many calves/kids per nurse cow/dam can result in a loss of body condition and health problems for the nurse cow/dam.

  • As they grow to a few months old, some calves/kids can be especially hard on the teats when nursing.  This can result in damage or injury to the teats. If this occurs, it is best to separate the offspring from their mothers.

It is also worth noting that calf-sharing (or kid-sharing) will reduce the amount of milk that is available to sell to customers. This can become especially problematic as the calves/kids reach 5+ months of age.

Choosing not to calf-share or kid-share is a good option for farmers who want to have the lowest risk of pathogens in their raw milk.  However, calf-sharing and kid-sharing can be done successfully when farmers acknowledge and manage the risks. The techniques listed above will reduce the likelihood of anything going wrong, for the benefit of both the customers and farmers.

A less-detailed version of this article was published in the June-July 2023 issue of Graze Magazine.

References

  1. Age related differences in phylogenetic diversity, prevalence of Shiga toxins, Intimin, Hemolysin genes and select serogroups of Escherichia. coli from pastured meat goats detected in a longitudinal cohort study - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7391229/ - "Overall, virulence genes and STEC [virulent e coli] were detected in isolates from goat kids in higher proportions than adult animals. Additionally, isolates with 2 or more virulence genes were significantly higher in pre-weaned and goat kids around weaning than in adult goats."

  2. Role of calf-adapted Escherichia coli in maintenance of antimicrobial drug resistance in dairy calves - https://pubmed.ncbi.nlm.nih.gov/14766551/ - "The prevalence of antimicrobial drug-resistant bacteria is typically highest in younger animals, and prevalence is not necessarily related to recent use of antimicrobial drugs. In dairy cattle, we hypothesize that antimicrobial drug-resistant, neonate-adapted bacteria are responsible for the observed high frequencies of resistant Escherichia coli in calves."

  3. Antibiotic resistance and transferable antibiotic resistance of Escherichia coli isolated from Swedish calves 5 and 30 days old - https://pubmed.ncbi.nlm.nih.gov/1094406/ - "In comparison with the 30-day-old calves, the 5-day-old calves had significantly more strains with transferable antibiotic resistance (95.8 percent as against 63.4 percent)."

  4. Enterotoxigenic Escherichia coli Infections in Newborn Calves: A Review -

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7130746/pdf/main.pdf - "Diarrhea caused by enterotoxigenic Escherichia coli is an infectious bacterial disease of calves that occurs during the first few days of life. The Escherichia coli that cause the disease possess special attributes of virulence that allow them to colonize the small intestine and produce an enterotoxin that causes hypersecretion of fluid into the intestinal lumen. These enterotoxigenic Escherichia coli are shed into the environment by infected animals in the herd and are ingested by newborn calves soon after birth."

  5. Prevalence of Escherichia coli O157:H7 in range beef calves at weaning -

    https://www.cambridge.org/core/journals/epidemiology-and-infection/article/prevalence-of-escherichia-coli-o157h7-in-range-beef-calves-at-weaning/EBD00C9EB16D36476F75D825C05139B0 - "This study was designed to determine the prevalence of Escherichia coli O157:H7 infection of beef calves at weaning, prior to arrival at the feedlot or mixing with cattle from other sources. Fifteen range cow-calf herds, which weaned calves in October and November, were sampled in Kansas, Missouri, Montana, Nebraska and South Dakota... Thirteen of the 15 herds (87%) were found to have at least one positive isolation of E. coli O157:H7 in faecal samples...This study indicates that E. coli O157:H7 infection before weaning, prior to entry into feedlots, is widespread. Furthermore, serologic evidence suggests that most calves (83%) and all herds (100%) have been exposed to E. coli O157.

  6. Diversity, Frequency, and Persistence of Escherichia coli O157 Strains from Range Cattle Environments -

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC152399/ - "The number of XbaI-PFGE subtypes, the variable frequency and persistence of subtypes, and the presence of identical subtypes in cattle feces, free-flowing water sources, and wildlife feces indicate that the complex molecular epidemiology of E. coli O157 previously described for confined cattle operations is also evident in extensively managed range cattle environments."

  7. A longitudinal study of Shiga-toxigenic Escherichia coli (STEC) prevalence in three Australian dairy herds -

    https://www.sciencedirect.com/science/article/pii/S037811359900173X?via%3Dihub -

    "In concurrence with previous studies, it appears that cattle, and in particular 1–14-week-old weanling calves, are the primary reservoir for STEC and EHEC on the dairy farm."

  8. Comparison of Diversities of Escherichia coli O157 Shed from a Cohort of Spring-Born Beef Calves at Pasture and in Housing - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1065151/ - "Overall, there was no demonstrable difference in shedding between calves when housed and at pasture. However, when shedding occurred, the rate of shedding was greater among calves in pen S (0.025 < P < 0.05) and pen N (0.05 < P ≤ 0.10) than when at pasture"

  9. Persistence of verocytotoxin-producing Escherichia coli O157:H7 in calves kept on pasture and in calves kept indoors during the summer months in a Swedish dairy herd -

    https://pubmed.ncbi.nlm.nih.gov/11407548/ - "The objective of this part of the study presented here was to examine the persistence of VTEC O157:H7 in calves that were kept on pasture and indoors, respectively, during the summer...The faecal samples from the calves kept on pasture were negative during the whole period...This suggests that calves on pasture may be less exposed to the bacteria or that they clear themselves. In the pen group, there were between one and six culture positive individuals per sampling occasion. One of the calves that was housed indoors was positive in faecal culture on four consecutive samplings." (One big limitation on this study is the very small sample size. There were only 6 calves in each group, which is a very small number so that makes this data somewhat less able to be used to draw widely-applicable conclusions.)

  10. Animal petting zoos as sources of Shiga toxin-producing Escherichia coli, Salmonella and extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae -   https://pubmed.ncbi.nlm.nih.gov/33382208/ - “Animal petting zoos and farm fairs provide the opportunity for children and adults to interact with animals, but contact with animals carries a risk of exposure to zoonotic pathogens and antimicrobial-resistant bacteria. The aim of this study was to assess the occurrence of Shiga toxin-producing Escherichia coli (STEC), Salmonella, extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae and methicillin-resistant Staphylococcus aureus (MRSA) in animal faeces from six animal petting zoos and one farm fair in Switzerland. Furthermore, hygiene facilities on the venues were evaluated. Of 163 faecal samples, 75 contained stx1, stx2 or stx1/stx2 genes, indicating the presence of STEC. Samples included faeces from sika deer (100%), sheep (92%), goats (88%), mouflons (80%), camels (62%), llamas (50%), yaks (50%), pigs (29%) and donkeys (6%), whereas no stx genes were isolated from faeces of calves, guinea pigs, hens, ostriches, ponies, zebras or zebus. Salmonella enterica subsp. enterica serovar Stourbridge (S. Stourbridge) was detected in faecal samples from camels. A total of four ESBL-producing E. coli strains were isolated from faeces of goats, camels and pigs... This study provides data that underscore the importance of hygiene measures to minimize the risk of transmission of zoonotic pathogens and MDR, ESBL-producing E. coli to visitors of animal petting venues.” 

  11. Investigations on Transfer of Pathogens between Foster Cows and Calves during the Suckling Period - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469241/ - “The present study aimed to compare the pathogens detected in the mammary glands of the foster cow with those in the oral cavities of the associated foster calves and to evaluate the resulting consequences for udder health, calf health and internal biosecurity... Transmission of P. multocida and S. aureus probably occurred during suckling. For S. sciuri and Sc. suis, environmental origins were assumed. Transmission from dam to foster cow with the suckling calf as vector could not be clearly demonstrated.”

  12. Effects of early separation on the dairy cow and calf: 2. Separation at 1 day and 2 weeks after birth - https://pubmed.ncbi.nlm.nih.gov/11179551/ - “Behavioural observations were conducted on 24 Holstein dairy cow-calf pairs during the first 24h after separation. Before separation, cow-calf pairs were generally inactive. After separation, cows from the late-separation treatment group showed higher rates of calling, movement and placing the head outside the pen, than cows in the early-separation group.”

  13. The effect of individual versus pair housing of dairy heifer calves during the preweaning period on measures of health, performance, and behavior up to 16 weeks of age - https://pubmed.ncbi.nlm.nih.gov/33358809/ - Pair housing of dairy heifer calves during the preweaning period helps meet the natural social needs of the calf and has been shown to improve growth and starter intake during the preweaning period as compared with individual housing.